GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (1)
Material
Publisher
  • American Society for Microbiology  (1)
Language
Years
  • 1
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 201, No. 3 ( 2019-02)
    Abstract: Escherichia coli and many other bacterial species can enter into a viable but nonculturable (VBNC) state, which is a survival strategy adopted by cells exposed to adverse environmental conditions. Pyruvate is known to be one factor that promotes resuscitation of VBNC cells. Here we studied the role of a pyruvate-sensing network, composed of the histidine kinase-response regulator systems BtsS/BtsR and YpdA/YpdB and the target gene btsT , encoding the high-affinity pyruvate/H + symporter BtsT, in the resuscitation of VBNC E. coli K-12 cells after exposure to cold for 120 days. Analysis of the proteome of VBNC cells revealed upregulation, relative to exponentially growing cells, of BtsT and other proteins involved in pyruvate metabolism. Provision of pyruvate stimulated protein and DNA biosynthesis, and thus resuscitation, in wild-type but not btsSR ypdAB mutant VBNC cells. This result was corroborated by time-dependent tracking of the resuscitation of individual VBNC E. coli cells observed in a microfluidic system. Finally, transport assays revealed that 14 C-labeled pyruvate was rapidly taken up into VBNC cells by BtsT. These results provide the first evidence that pyruvate is taken up as a carbon source for the resuscitation of VBNC E. coli cells. IMPORTANCE Viable but nonculturable (VBNC) bacteria do not form colonies in standard medium but otherwise retain their metabolic activity and can express toxic proteins. Many bacterial genera, including Escherichia , Vibrio , and Listeria , have been shown to enter the VBNC state upon exposure to adverse conditions, such as low temperature, radiation, and starvation. Ultimately, these organisms pose a public health risk with potential implications for the pharmaceutical and food industries, as dormant organisms are especially difficult to selectively eliminate and VBNC bacteria can be resuscitated if placed in an environment with appropriate nutrition and temperature. Here we used a microfluidic system to monitor the resuscitation of single VBNC cells over time. We provide new molecular insights into the initiation of resuscitation by demonstrating that VBNC E. coli cells rapidly take up pyruvate with an inducible high-affinity transporter, whose expression is triggered by the BtsSR-YpdAB sensing network.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...