GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 58, No. 3 ( 2014-03), p. 1529-1537
    Abstract: We report the molecular identifications and antifungal susceptibilities of the isolates causing fungemia collected in the CANDIPOP population-based study conducted in 29 Spanish hospitals. A total of 781 isolates (from 767 patients, 14 of them having mixed fungemia) were collected. The species found most frequently were Candida albicans (44.6%), Candida parapsilosis (24.5%), Candida glabrata (13.2%), Candida tropicalis (7.6%), Candida krusei (1.9%), Candida guilliermondii (1.7%), and Candida lusitaniae (1.3%). Other Candida and non- Candida species accounted for approximately 5% of the isolates. The presence of cryptic species was low. Compared to findings of previous studies conducted in Spain, the frequency of C. glabrata has increased. Antifungal susceptibility testing was performed by using EUCAST and CLSI M27-A3 reference procedures; the two methods were comparable. The rate of fluconazole-susceptible isolates was 80%, which appears to be a decrease compared to findings of previous studies, explained mainly by the higher frequency of C. glabrata . Using the species-specific breakpoints and epidemiological cutoff values, the rate of voriconazole and posaconazole in vitro resistance was low ( 〈 2%). In the case of C. tropicalis , using the EUCAST procedure, the rate of azole resistance was around 20%. There was a correlation between the previous use of azoles and the presence of fluconazole-resistant isolates. Resistance to echinocandins was very rare (2%), and resistance to amphotericin B also was very uncommon. The sequencing of the hot spot (HS) regions from FKS1 or FKS2 genes in echinocandin-resistant isolates revealed previously described point mutations. The decrease in the susceptibility to fluconazole in Spanish isolates should be closely monitored in future studies.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 62, No. 9 ( 2018-09)
    Abstract: Antifungal resistance is increasing by the emergence of intrinsically resistant species and by the development of secondary resistance in susceptible species. A previous study performed in Spain revealed levels of azole resistance in molds of between 10 and 12.7%, but secondary resistance in Aspergillus fumigatus was not detected. We used itraconazole (ITZ)-supplemented medium to select resistant strains. A total of 500 plates supplemented with 2 mg/liter of ITZ were sent to 10 Spanish tertiary hospitals, and molecular identification and antifungal susceptibility testing were performed. In addition, the cyp51A gene in those A. fumigatus strains showing azole resistance was sequenced. A total of 493 isolates were included in the study. Sixteen strains were isolated from patients with an infection classified as proven, 104 were isolated from patients with an infection classified as probable, and 373 were isolated from patients with an infection classified as colonization. Aspergillus was the most frequent genus isolated, at 80.3%, followed by Scedosporium-Lomentospora (7.9%), Penicillium-Talaromyces (4.5%), Fusarium (2.6%), and the order Mucorales (1%). Antifungal resistance was detected in Scedosporium-Lomentospora species, Fusarium , Talaromyces , and Mucorales . Three strains of A. fumigatus sensu stricto were resistant to azoles; two of them harbored the TR 34 +L98H mechanism of resistance, and the other one had no mutations in cyp51A . The level of azole resistance in A. fumigatus remains low, but cryptic species represent over 10% of the isolates and have a broader but overall higher range of antifungal resistance.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2006
    In:  Journal of Clinical Microbiology Vol. 44, No. 4 ( 2006-04), p. 1587-1589
    In: Journal of Clinical Microbiology, American Society for Microbiology, Vol. 44, No. 4 ( 2006-04), p. 1587-1589
    Abstract: We describe a case of bacteremia due to an as yet unclassified Acinetobacter genomic species 17-like strain. The recognition of this microorganism as non- Acinetobacter baumannii may have important epidemiological implications, as it relieves the hospital of the implementation of barrier precautions for patients infected or colonized as may be necessary with a multiresistant A. baumannii epidemic.
    Type of Medium: Online Resource
    ISSN: 0095-1137 , 1098-660X
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2006
    detail.hit.zdb_id: 1498353-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 63, No. 1 ( 2019-01)
    Abstract: The aim of this study was to characterize the population structure of 56 OXA-48-like-producing Klebsiella pneumoniae isolates, as well as extended-spectrum β-lactamase (ESBL) and carbapenemase genes, recovered in 2014 and 2015 from 16 hospitals in southern Spain. XbaI pulsed-field gel electrophoresis and multilocus sequence typing were performed to assess clonal relatedness. Representative isolates belonging to OXA-48-like-producing and CTX-M-15-coproducing pulsotypes were selected for characterization of bla OXA-48-like - and bla CTX-M-15 -carrying plasmids by PCR-based replicon typing, IncF subtyping, whole-genome sequencing analysis, and typing of Tn 1999 structures. Forty-three OXA-48-producing isolates (77%) were recovered from clinical samples and 13 from rectal swabs. All isolates showed ertapenem MIC values of ≥1 mg/liter, although 70% remained susceptible to imipenem and meropenem. Forty-nine isolates (88%) produced OXA-48, 5 produced OXA-245, and 2 produced OXA-181. Twenty-eight different pulsotypes (5 detected in more than 1 hospital) and 16 sequence types (STs) were found. The most prevalent clones were ST15 (29 isolates [52%]) and ST11 (7 isolates [13%] ). Forty-five (80%) isolates were also bla CTX-M-15 carriers. The bla CTX-M-15 gene was mostly (82%) located on IncR plasmids, although ST15 and ST11 isolates also carried this gene on IncF plasmids. The composite transposon variant Tn 1999.2 -like was the most frequent. Among ST15 and ST11 isolates, different transposon variants were observed. The bla OXA-48 gene was mainly located on IncL plasmids, although IncM plasmids were also observed. The spread of OXA-48-like-producing K. pneumoniae in southern Spain is mainly due to ST15 and ST11 clones. Variation within clonal lineages could indicate different acquisition events for both ESBL and carbapenemase traits.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Clinical Microbiology, American Society for Microbiology, Vol. 48, No. 12 ( 2010-12), p. 4623-4626
    Abstract: Two hundred twenty-one isolates of Acinetobacter baumannii and 15 of Acinetobacter genospecies 3 (AG3) were consecutively collected in a 30-day period during the nationwide project GEIH-Ab2000. Nosocomial acquisition ( P = 0.01), intensive care unit admission ( P = 0.02), and antibiotic pressure ( P = 0.03) were observed to be lower in the AG3 group. AG3 isolates were more frequently implied in wound infections ( P = 0.05), while A. baumannii tended to be recovered from respiratory samples ( P = 0.08). To our knowledge, this is the first report analyzing the clinical differences among Acinetobacter genospecies, with our findings suggesting that clinical features of AG3 may not be equivalent to those traditionally described for A. baumannii .
    Type of Medium: Online Resource
    ISSN: 0095-1137 , 1098-660X
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1498353-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 61, No. 7 ( 2017-07)
    Abstract: The objectives of our study were to describe the characteristics of patients with Candida guilliermondii candidemia and to perform an in-depth microbiological characterization of isolates and compare them with those of patients with C. albicans candidemia. We described the risk factors and outcomes of 22 patients with candidemia caused by the C. guilliermondii complex. Incident isolates were identified using molecular techniques, and susceptibility to fluconazole, anidulafungin, and micafungin was studied. Biofilm formation was measured using the crystal violet assay (biomass production) and the XTT reduction assay (metabolic activity), and virulence was studied using the Galleria mellonella model. Biofilm formation was compared with that observed for C. albicans . The main conditions predisposing to infection were malignancy (68%), immunosuppressive therapy (59%), and neutropenia (18%). Clinical presentation of candidemia was less severe in patients infected by the C. guilliermondii complex than in patients infected by C. albicans , and 30-day mortality was lower in C. guilliermondii patients (13.6% versus 33.9%, respectively; P = 0.049). Isolates were identified as C. guilliermondii sensu stricto ( n = 17) and Candida fermentati ( n = 5). The isolates produced biofilms with low metabolic activity and moderate biomass. The G. mellonella model showed that C. guilliermondii was less virulent than C. albicans (mean of 6 days versus 1 day of survival, respectively; P 〈 0.001). Patients with candidemia caused by the C. guilliermondii complex had severe and debilitating underlying conditions. Overall, the isolates showed diminished susceptibility to fluconazole and echinocandins, although poor biofilm formation and the low virulence were associated with a favorable outcome.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 53, No. 3 ( 2009-03), p. 1177-1184
    Abstract: As a part of a nationwide study in Spain, 15 clinical isolates of Acinetobacter genomic species 3 (AG3) were analyzed. The main objective of the study was to characterize the ampC genes from these isolates and to determine their involvement in β-lactam resistance in AG3. The 15 AG3 isolates showed different profiles of resistance to ampicillin (range of MICs, 12 to 〉 256 μg/ml). Nucleotide sequencing of the 15 ampC genes yielded 12 new AmpC enzymes (ADC-12 to ADC-23). The 12 AG3 enzymes showed 93.7 to 96.1% amino acid identity with respect to the AmpC enzyme from Acinetobacter baumannii (ADC-1 enzyme). Eight out of fifteen ampC genes were expressed in Escherichia coli cells under the control of a common promoter, and with the exception of one isolate (isolate 65, which showed lower β-lactam MICs), significant differences in overall β-lactam MICs for E. coli cells expressing AG3 ampC genes were not revealed. No significant differences in ampC gene expression in AG3 clinical isolates were revealed by reverse transcription-PCR analysis. A detailed analysis of the 12 AmpC protein sequences revealed that amino acid replacements (in comparison with those of ADC-1) occurred mainly in the same positions, although none were located in important functional domains such as the Ω- loop or conserved β-lactamase motifs. Kinetic experiments performed with three representative AmpC enzymes (ADC-14, -16, and -18) in some cases revealed dramatic changes in K m and k cat values for β-lactams. No IS Aba1 was detected upstream of the ampC genes. Our results reveal 12 new ampC genes in AG3. The enzymes showed a moderate degree of variability, and they are tentatively named ADC-12 to ADC-23.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2009
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 11, No. 2 ( 2023-04-13)
    Abstract: Phages and bacteria have acquired resistance mechanisms for protection. In this context, the aims of the present study were to analyze the proteins isolated from 21 novel lytic phages of Klebsiella pneumoniae in search of defense mechanisms against bacteria and also to determine the infective capacity of the phages. A proteomic study was also conducted to investigate the defense mechanisms of two clinical isolates of K. pneumoniae infected by phages. For this purpose, the 21 lytic phages were sequenced and de novo assembled. The host range was determined in a collection of 47 clinical isolates of K. pneumoniae , revealing the variable infective capacity of the phages. Genome sequencing showed that all of the phages were lytic phages belonging to the order Caudovirale s. Phage sequence analysis revealed that the proteins were organized in functional modules within the genome. Although most of the proteins have unknown functions, multiple proteins were associated with defense mechanisms against bacteria, including the restriction-modification system, the toxin-antitoxin system, evasion of DNA degradation, blocking of host restriction and modification, the orphan CRISPR-Cas system, and the anti-CRISPR system. Proteomic study of the phage-host interactions (i.e., between isolates K3574 and K3320, which have intact CRISPR-Cas systems, and phages vB_KpnS-VAC35 and vB_KpnM-VAC36, respectively) revealed the presence of several defense mechanisms against phage infection (prophage, defense/virulence/resistance, oxidative stress and plasmid proteins) in the bacteria, and of the Acr candidate (anti-CRISPR protein) in the phages. IMPORTANCE Researchers, including microbiologists and infectious disease specialists, require more knowledge about the interactions between phages and their bacterial hosts and about their defense mechanisms. In this study, we analyzed the molecular mechanisms of viral and bacterial defense in phages infecting clinical isolates of K. pneumoniae . Viral defense mechanisms included restriction-modification system evasion, the toxin-antitoxin (TA) system, DNA degradation evasion, blocking of host restriction and modification, and resistance to the abortive infection system, anti-CRISPR and CRISPR-Cas systems. Regarding bacterial defense mechanisms, proteomic analysis revealed expression of proteins involved in the prophage (FtsH protease modulator), plasmid (cupin phosphomannose isomerase protein), defense/virulence/resistance (porins, efflux pumps, lipopolysaccharide, pilus elements, quorum network proteins, TA systems, and methyltransferases), oxidative stress mechanisms, and Acr candidates (anti-CRISPR protein). The findings reveal some important molecular mechanisms involved in the phage-host bacterial interactions; however, further study in this field is required to improve the efficacy of phage therapy.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 58, No. 11 ( 2014-11), p. 6627-6638
    Abstract: Amphotericin B (AMB) is an antifungal drug that binds to ergosterol and forms pores at the cell membrane, causing the loss of ions. In addition, AMB induces the accumulation of reactive oxygen species (ROS), and although these molecules have multiple deleterious effects on fungal cells, their specific role in the action mechanism of AMB remains unknown. In this work, we studied the role of ROS in the action mechanism of AMB. We determined the intracellular induction of ROS in 44 isolates of different pathogenic yeast species ( Candida albicans , Candida parapsilosis , Candida glabrata , Candida tropicalis , Candida krusei , Cryptococcus neoformans , and Cryptococcus gattii ). We also characterized the production of ROS in AMB-resistant isolates. We found that AMB induces the formation of ROS in all the species tested. The inhibition of the mitochondrial respiratory chain by rotenone blocked the induction of ROS by AMB and provided protection from the killing action of the antifungal. Moreover, this phenomenon was absent in strains that displayed resistance to AMB. These strains showed an alteration in the respiration rate and mitochondrial membrane potential and also had higher catalase activity than that of the AMB-susceptible strains. Consistently, AMB failed to induce protein carbonylation in the resistant strains. Our data demonstrate that the production of ROS by AMB is a universal and important action mechanism that is correlated with the fungicidal effect and might explain the low rate of resistance to the molecule. Finally, these data provide an opportunity to design new strategies to improve the efficacy of this antifungal.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 65, No. 9 ( 2021-08-17)
    Abstract: Klebsiella pneumoniae is an opportunistic Gram-negative pathogen that employs different strategies (resistance and persistence) to counteract antibiotic treatments. This study aimed to search for new means of combatting imipenem-resistant and persister strains of K. pneumoniae by repurposing the anticancer drug mitomycin C as an antimicrobial agent and by combining the drug and the conventional antibiotic imipenem with the lytic phage vB_KpnM-VAC13. Several clinical K. pneumoniae isolates were characterized, and an imipenem-resistant isolate (harboring OXA-245 β-lactamase) and a persister isolate were selected for study. The mitomycin C and imipenem MICs for both isolates were determined by the broth microdilution method. Time-kill curve data were obtained by optical density at 600 nm (OD 600 ) measurement and CFU enumeration in the presence of each drug alone and with the phage. The frequency of occurrence of mutants resistant to each drug and the combinations was also calculated, and the efficacy of the combination treatments was evaluated using an in vivo infection model ( Galleria mellonella ). The lytic phage vB_KpnM-VAC13 and mitomycin C had synergistic effects on imipenem-resistant and persister isolates, both in vitro and in vivo. The phage-imipenem combination successfully killed the persisters but not the imipenem-resistant isolate harboring OXA-245 β-lactamase. Interestingly, the combinations decreased the emergence of in vitro resistant mutants of both isolates. Combinations of the lytic phage vB_KpnM-VAC13 with mitomycin C and imipenem were effective against the persister K. pneumoniae isolate. The lytic phage-mitomycin C combination was also effective against imipenem-resistant K. pneumoniae strains harboring OXA-245 β-lactamase.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...