GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (4)
Material
Publisher
  • American Society for Microbiology  (4)
Language
Years
Subjects(RVK)
  • 1
    In: Journal of Virology, American Society for Microbiology, Vol. 96, No. 16 ( 2022-08-24)
    Abstract: The continuous antigenic variation of influenza A viruses remains a major hurdle for vaccine selection; however, the molecular determinants and mechanisms of antigenic change remain largely unknown. In this study, two escape mutants were generated by serial passages of the Eurasian avian-like H1N1 swine influenza virus (EA H1N1 SIV) A/swine/Henan/11/2005 (HeN11) in the presence of two neutralizing monoclonal antibodies (mAbs) against the hemagglutinin (HA) protein, which were designated HeN11-2B6-P5 and HeN11-4C7-P8, respectively. The HeN11-2B6-P5 mutant simultaneously harbored the N190D and I230M substitutions in HA, whereas HeN11-4C7-P8 harbored the M269R substitution in HA (H3 numbering). The effects of each of these substitutions on viral antigenicity were determined by measuring the neutralization and hemagglutination inhibition (HI) titers with mAbs and polyclonal sera raised against the representative viruses. The results indicate that residues 190 and 269 are key determinants of viral antigenic variation. In particular, the N190D mutation had the greatest antigenic impact, as determined by the HI assay. Further studies showed that both HeN11-2B6-P5 and HeN11-4C7-P8 maintained the receptor-binding specificity of the parent virus, although the single mutation N190D decreased the binding affinity for the human-type receptor. The replicative ability in vitro of HeN11-2B6-P5 was increased, whereas that of HeN11-4C7-P8 was decreased. These findings extend our understanding of the antigenic evolution of influenza viruses under immune pressure and provide insights into the functional effects of amino acid substitutions near the receptor-binding site and the interplay among receptor binding, viral replication, and antigenic drift. IMPORTANCE The antigenic changes that occur continually in the evolution of influenza A viruses remain a great challenge for the effective control of disease outbreaks. Here, we identified three amino acid substitutions (at positions 190, 230, and 269) in the HA of EA H1N1 SIVs that determine viral antigenicity and result in escape from neutralizing monoclonal antibodies. All three of these substitutions have emerged in nature. Of note, residues 190 and 230 have synergistic effects on receptor binding and antigenicity. Our findings provide a better understanding of the functional effects of amino acid substitutions in HA and their consequences for the antigenic drift of influenza viruses.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Virology, American Society for Microbiology, Vol. 94, No. 1 ( 2019-12-12)
    Abstract: Efficient human-to-human transmission is a prerequisite for a novel influenza virus to cause an influenza pandemic; however, the genetic determinants of influenza virus transmission are still not fully understood. In this study, we compared the respiratory droplet transmissibilities of four H7N9 viruses that are genetic closely related and found that these viruses have dissimilar transmissibilities in guinea pigs: A/Anhui/1/2013 (AH/1) transmitted efficiently, whereas the other three viruses did not transmit. The three nontransmissible viruses have one to eight amino acid differences compared with the AH/1 virus. To investigate which of these amino acids is important for transmission, we used reverse genetics to generate a series of reassortants and mutants in the AH/1 background and tested their transmissibility in guinea pigs. We found that the neuraminidase (NA) of the nontransmissible virus A/chicken/Shanghai/S1053/2013 had low enzymatic activity that impaired the transmission of AH/1 virus, and three amino acid mutations—V292I and K627E in PB2 and D156E in M1—independently abolished the transmission of the AH/1 virus. We further found that an NA reassortant and three single-amino-acid mutants replicated less efficiently than the AH/1 virus in A549 cells and that the amino acid at position 156 of M1 affected the morphology of H7N9 viruses. Our study identifies key amino acids in PB2 and M1 that play important roles in H7N9 influenza virus transmission and provides new insights into the transmissibility of influenza virus. IMPORTANCE Efficient transmission is a prerequisite for a novel influenza virus to cause an influenza pandemic; however, the genetic determinants of influenza virus transmission remain poorly understood. H7N9 influenza viruses, which emerged in 2013 in China, have caused over 1,560 human infection cases, showing clear pandemic potential. Previous studies have shown that the H7N9 viruses differ in their transmissibility in animal models. In this study, we found two amino acids in PB2 (292V and 627K) and one in M1 (156D) that are extremely important for H7N9 virus transmission. Of note, PB2 292V and M1 156D appear in most H7N9 viruses, and the PB2 627K mutation could easily occur when the H7N9 virus replicates in humans. Our study thus identifies new amino acids that are important for influenza virus transmission and suggests that just a few key amino acid changes can render the H7N9 virus transmissible in mammals.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 91, No. 5 ( 2017-03)
    Abstract: Autophagy functions as an intrinsic antiviral defense. However, some viruses can subvert or even enhance host autophagic machinery to increase viral replication and pathogenesis. The role of autophagy during avibirnavirus infection, especially late stage infection, remains unclear. In this study, infectious bursal disease virus (IBDV) was used to investigate the role of autophagy in avibirnavirus replication. We demonstrated IBDV induction of autophagy as a significant increase in puncta of LC3 + autophagosomes, endogenous levels of LC3-II, and ultrastructural characteristics typical of autophagosomes during the late stage of infection. Induction of autophagy enhances IBDV replication, whereas inhibition of autophagy impairs viral replication. We also demonstrated that IBDV infection induced autophagosome-lysosome fusion, but without active degradation of their contents. Moreover, inhibition of fusion or of lysosomal hydrolysis activity significantly reduced viral replication, indicating that virions utilized the low-pH environment of acidic organelles to facilitate viral maturation. Using immuno-transmission electron microscopy (TEM), we observed that a large number of intact IBDV virions were arranged in a lattice surrounded by p62 proteins, some of which lay between virions. Additionally, many virions were encapsulated within the vesicular membranes, with an obvious release stage observed by TEM. The autophagic endosomal pathway facilitates low-pH-mediated maturation of viral proteins and membrane-mediated release of progeny virions. IMPORTANCE IBDV is the most extensively studied virus in terms of molecular characteristics and pathogenesis; however, mechanisms underlying the IBDV life cycle require further exploration. The present study demonstrated that autophagy enhances viral replication at the late stage of infection, and the autophagy pathway facilitates IBDV replication complex function and virus assembly, which is critical to completion of the virus life cycle. Moreover, the virus hijacks the autophagic vacuoles to mature in an acidic environment and release progeny virions in a membrane-mediated cell-to-cell manner. This autophagic endosomal pathway is proposed as a new mechanism that facilitates IBDV maturation, release, and reinternalization. This report presents a concordance in exit strategies among some RNA and DNA viruses, which exploit autophagy pathway for their release from cells.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 87, No. 11 ( 2021-05-11)
    Abstract: Selective oxidation of C-H bonds in alkylphenols holds great significance for not only structural derivatization in pharma- and biomanufacturing but also biological degradation of these toxic chemicals in environmental protection. A unique chemomimetic biocatalytic system using enzymes from a p -cresol biodegradation pathway has recently been developed. As the central biocatalyst, the cytochrome P450 monooxygenase CreJ oxidizes diverse p - and m -alkylphenol phosphates with perfect stereoselectivity at different efficiencies. However, the mechanism of regio- and stereoselectivity of this chemomimetic biocatalytic system remained unclear. Here, using p - and m -ethylphenol substrates, we elucidate the CreJ-catalyzed key steps for selective oxidations. The crystal structure of CreJ in complex with m -ethylphenol phosphate was solved and compared with its complex structure with p -ethylphenol phosphate isomer. The results indicate that the conformational changes of substrate-binding residues are slight, while the substrate promiscuity is achieved mainly by the available space in the catalytic cavity. Moreover, the catalytic preferences of regio- and stereoselective hydroxylation for the two ethylphenol substrates is explored by molecular dynamics simulations. The ethyl groups in the complexes display different flexibilities, and the distances of the active oxygen to H pro-S and H pro-R of methylene agree with the experimental stereoselectivity. The regioselectivity can be explained by the distances and bond dissociation energy. These results provide not only the mechanistic insights into CreJ regio- and stereoselectivity but also the structural basis for further P450 enzyme design and engineering. IMPORTANCE The key cytochrome P450 monooxygenase CreJ showed excellent regio- and stereoselectivity in the oxidation of various alkylphenol substrates. C-H bond functionalization of these toxic alkylphenols holds great significance for both biological degradation of these environmental chemicals and production of value-added structural derivatives in pharmaceutical and biochemical industries. Our results, combined with in vitro enzymatic assays, crystal structure determination of enzyme-substrate complex, and molecular dynamics simulations, provide not only significant mechanism elucidation of the regio- and stereoselective catalyzation mediated by CreJ but also the promising directions for future engineering efforts of this enzyme toward more useful products. It also has great extendable potential to couple this multifunctional P450 enzyme with other biocatalysts (e.g., hydroxyl-based glycosylase) to access more alkylphenol-derived high-value chemicals through environment-friendly biocatalysis and biotransformation.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...