GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (3)
  • 1
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 11, No. 1 ( 2023-02-14)
    Abstract: The gut microbiota plays an essential role in the regulation of the immune system and the etiology of human autoimmune diseases. However, a holistic understanding of the gut bacteriome, mycobiome, and virome in patients with osteoarthritis (OA) remains lacking. Here, we explored the gut microbiotas of 44 OA patients and 46 healthy volunteers via deep whole-metagenome shotgun sequencing of their fecal samples. The gut bacteriome and mycobiome were analyzed using a reference-based strategy. Gut viruses were identified from the metagenomic assembled contigs, and the gut virome was profiled based on 6,567 nonredundant viral operational taxonomic units (vOTUs). We revealed that the gut microbiome (including bacteriome, mycobiome, and virome) of OA patients is fundamentally altered, characterized by a panel of 279 differentially abundant bacterial species, 10 fungal species, and 627 vOTUs. The representative OA-enriched bacteria included Anaerostipes hadrus (GENOME147149), Prevotella sp900313215 (GENOME08259), Eubacterium_E hallii (GENOME000299), and Blautia A (GENOME001004), while Bacteroides plebeius A (GENOME239725), Roseburia inulinivorans (GENOME 001770), Dialister sp900343095 (GENOME075103), Phascolarctobacterium faecium (GENOME233517), and several members of Faecalibacterium and Prevotella were depleted in OA patients. Fungi such as Debaryomyces fabryi (GenBank accession no. GCA_003708665 ), Candida parapsilosis ( GCA_000182765 ), and Apophysomyces trapeziformis ( GCA_000696975 ) were enriched in the OA gut microbiota, and Malassezia restricta ( GCA_003290485 ), Aspergillus fumigatus ( GCA_003069565 ), and Mucor circinelloides ( GCA_010203745 ) were depleted. The OA-depleted viruses spanned Siphoviridae (95 vOTUs), Myoviridae (70 vOTUs), and Microviridae (5 vOTUs), while 30 Siphoviridae vOTUs were enriched in OA patients. Functional analysis of the gut bacteriome and virome also uncovered their functional signatures in relation to OA. Moreover, we demonstrated that the OA-associated gut bacterial and viral signatures are tightly interconnected, suggesting that they may impact disease together. Finally, we showed that the multikingdom signatures are effective in discriminating the OA patients from healthy controls, suggesting the potential of gut microbiota for the prediction of OA and related diseases. Our results delineated the fecal bacteriome, mycobiome, and virome landscapes of the OA microbiota and provided biomarkers that will aid in future mechanistic and clinical intervention studies. IMPORTANCE The gut microbiome of OA patients was completely altered compared to that in healthy individuals, including 279 differentially abundant bacterial species, 10 fungal species and 627 viral operational taxonomic units (vOTUs). Functional analysis of the gut bacteriome and virome also revealed their functional signatures in relation to OA. We found that OA-associated gut bacterial and viral signatures were tightly interconnected, indicating that they may affect the disease together. The OA patients can be discriminated effectively from healthy controls using the multikingdom signatures, suggesting the potential of gut microbiota for the prediction of OA and related diseases.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2014
    In:  Genome Announcements Vol. 2, No. 2 ( 2014-05)
    In: Genome Announcements, American Society for Microbiology, Vol. 2, No. 2 ( 2014-05)
    Abstract: The genome sequence of a novel porcine circovirus 2 strain (CC12) is composed of 1,767 nucleotides, with two major open reading frames (ORFs). ORF1 encodes two replication-associated proteins (Rep and Rep′) with the unique mutation N186S, and ORF2 encodes a viral capsid protein (Cap) with two rare mutations, R59K and A190T.
    Type of Medium: Online Resource
    ISSN: 2169-8287
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 2968655-6
    detail.hit.zdb_id: 2704277-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 94, No. 9 ( 2020-04-16)
    Abstract: Porcine circovirus type 2 (PCV2) is an important pathogen in swine herds, and its infection of pigs has caused severe economic losses to the pig industry worldwide. The capsid protein of PCV2 is the only structural protein that is associated with PCV2 infection and immunity. Here, we report a neutralizing monoclonal antibody (MAb), MAb 3A5, that binds to intact PCV2 virions of the PCV2a, PCV2b, and PCV2d genotypes. MAb 3A5 neutralized PCV2 by blocking viral attachment to PK15 cells. To further explore the neutralization mechanism, we resolved the structure of the PCV2 virion in complex with MAb 3A5 Fab fragments by using cryo-electron microscopy single-particle analysis. The binding sites were located at the topmost edges around 5-fold icosahedral symmetry axes, with each footprint covering amino acids from two adjacent capsid proteins. Most of the epitope residues (15/18 residues) were conserved among 2,273 PCV2 strains. Mutations of some amino acids within the epitope had significant effects on the neutralizing activity of MAb 3A5. This study reveals the molecular and structural bases of this PCV2-neutralizing antibody and provides new and important information for vaccine design and therapeutic antibody development against PCV2 infections. IMPORTANCE PCV2 is associated with several clinical manifestations collectively known as PCV2-associated diseases (PCVADs). Neutralizing antibodies play a crucial role in the prevention of PCVADs. We demonstrated previously that a MAb, MAb 3A5, neutralizes the PCV2a, PCV2b, and PCV2d genotypes with different degrees of efficiency, but the underlying mechanism remains elusive. Here, we report the neutralization mechanism of this MAb and the structure of the PCV2 virion in complex with MAb 3A5 Fabs, showing a binding mode in which one Fab interacted with more than two loops from two adjacent capsid proteins. This binding mode has not been observed previously for PCV2-neutralizing antibodies. Our work provides new and important information for vaccine design and therapeutic antibody development against PCV2 infections.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...