GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2004
    In:  Journal of Virology Vol. 78, No. 14 ( 2004-07-15), p. 7803-7812
    In: Journal of Virology, American Society for Microbiology, Vol. 78, No. 14 ( 2004-07-15), p. 7803-7812
    Abstract: The 72-kDa immediate-early 1 protein (IE1-72kDa) of human cytomegalovirus has been previously shown to be posttranslationally modified by covalent conjugation to the ubiquitin-related protein SUMO-1. Using an infectious bacterial artificial chromosome clone of human cytomegalovirus, we constructed a mutant virus (BAD pm IE1-K450R) that is deficient for SUMOylation of IE1-72kDa due to a single amino acid exchange in the SUMO-1 attachment site. Compared to wild-type virus, this mutant grew more slowly and generated a reduced yield in infected human fibroblasts, indicating that SUMO modification is required for the full activity of IE1-72kDa. The lack of SUMOylation did not affect the intranuclear localization of IE1-72kDa, including its ability to target to and disrupt PML bodies and to bind to mitotic chromatin. Likewise, SUMOylation-deficient IE1-72kDa activated several viral promoters as efficiently as the wild-type protein. However, the failure to modify IE1-72kDa resulted in substantially reduced levels of the IE2 transcript and its 86-kDa protein (IE2-86kDa). These observations suggest that SUMO modification of IE1-72kDa contributes to efficient HCMV replication by promoting the accumulation of IE2-86kDa.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2004
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: mBio, American Society for Microbiology, Vol. 4, No. 5 ( 2013-11)
    Abstract: Few or no genomic sequences exist for members of the numerous bacterial phyla lacking cultivated representatives, making it difficult to assess their roles in the environment. This paper presents three complete and one essentially complete genomes of members of four candidate phyla, documents consistently small genome size, and predicts metabolic capabilities on the basis of gene content. These metagenomic analyses expand our view of a lifestyle apparently common across these candidate phyla.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 91, No. 6 ( 2017-03-15)
    Abstract: KS-Bcl-2 is a Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded viral Bcl-2 (vBcl-2) homolog which has apoptosis- and autophagy-inhibiting activity when expressed in transfected cells. However, little is known about its function during viral infection. As KS-Bcl-2 is expressed during the lytic replication cycle, we used constitutively lytic and inducibly lytic KSHV mutants to investigate the role of KS-Bcl-2 during the lytic cycle. We show that KSHV cannot complete the lytic replication cycle and produce infectious progeny in the absence of KS-Bcl-2, indicating that the protein is essential for KSHV replication. Replacement of the KS-Bcl-2 coding sequence, ORF16, by sequences encoding a potent cellular apoptosis and autophagy inhibitor, Bcl-XL, or the cytomegalovirus mitochondrial inhibitor of apoptosis, vMIA, did not rescue KSHV replication, suggesting that KS-Bcl-2 has a function that goes beyond apoptosis and autophagy inhibition. Strikingly, the vBcl-2 proteins of the related γ 2 -herpesviruses murine herpesvirus 68 and herpesvirus saimiri did not rescue the replication of a KS-Bcl-2 deletion mutant, but rhesus rhadinovirus (RRV) vBcl-2 did. Deletion of ORF16 from the RRV genome abrogated viral replication, but its replacement by KSHV ORF16 rescued RRV replication, indicating that the essential vBcl-2 function is conserved between these two primate rhadinoviruses. We further show that the KSHV and RRV Bcl-2 homologs localize to the mitochondria and nuclei of infected cells. Deletion of 17 amino acids from the N terminus of KS-Bcl-2 abrogates nuclear localization and KSHV replication, suggesting that KS-Bcl-2 might execute its essential function in the nuclei of infected cells. IMPORTANCE Several viruses express proteins homologous to cellular Bcl-2. Viral Bcl-2 proteins have functions similar to those of cellular Bcl-2: they can inhibit apoptosis, a form of programmed cell death, and autophagy, a self-degradative process for the disposal of dysfunctional or unwanted components. This study shows that the vBcl-2 proteins of KSHV and RRV differ from other vBcl-2 proteins in that they are essential for viral replication. The essential function is separate from the apoptosis- and autophagy-inhibiting activity but correlates with an unusual localization within the cell nucleus, suggesting that these proteins exert a novel function in the nucleus.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 187, No. 13 ( 2005-07), p. 4671-4682
    Abstract: Corynebacterium jeikeium is a “lipophilic” and multidrug-resistant bacterial species of the human skin flora that has been recognized with increasing frequency as a serious nosocomial pathogen. Here we report the genome sequence of the clinical isolate C. jeikeium K411, which was initially recovered from the axilla of a bone marrow transplant patient. The genome of C. jeikeium K411 consists of a circular chromosome of 2,462,499 bp and the 14,323-bp bacteriocin-producing plasmid pKW4. The chromosome of C. jeikeium K411 contains 2,104 predicted coding sequences, 52% of which were considered to be orthologous with genes in the Corynebacterium glutamicum , Corynebacterium efficiens , and Corynebacterium diphtheriae genomes. These genes apparently represent the chromosomal backbone that is conserved between the four corynebacteria. Among the genes that lack an ortholog in the known corynebacterial genomes, many are located close to transposable elements or revealed an atypical G+C content, indicating that horizontal gene transfer played an important role in the acquisition of genes involved in iron and manganese homeostasis, in multidrug resistance, in bacterium-host interaction, and in virulence. Metabolic analyses of the genome sequence indicated that the “lipophilic” phenotype of C. jeikeium most likely originates from the absence of fatty acid synthase and thus represents a fatty acid auxotrophy. Accordingly, both the complete gene repertoire and the deduced lifestyle of C. jeikeium K411 largely reflect the strict dependence of growth on the presence of exogenous fatty acids. The predicted virulence factors of C. jeikeium K411 are apparently involved in ensuring the availability of exogenous fatty acids by damaging the host tissue.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2003
    In:  Journal of Virology Vol. 77, No. 21 ( 2003-11), p. 11633-11643
    In: Journal of Virology, American Society for Microbiology, Vol. 77, No. 21 ( 2003-11), p. 11633-11643
    Abstract: Viruses have evolved various strategies to prevent premature apoptosis of infected host cells. Some of the viral genes mediating antiapoptotic functions have been identified by their homology to cellular genes, but others are structurally unrelated to genes of known function. In this study, we used a random, unbiased approach to identify such genes in the murine cytomegalovirus genome. From a library of random transposon insertion mutants, a mutant virus that caused premature cell death was isolated. The transposon was inserted within open reading frame m41. An independently constructed m41 deletion mutant showed the same phenotype, whereas deletion mutants lacking the adjacent genes m40 and M42 did not. Apoptosis occurred in different cell types, could be blocked by caspase inhibitors, and did not require p53. Within the murine cytomegalovirus genome, m41, m40, and m39 form a small cluster of genes of unknown function. They are homologous to r41, r40, and r39 of rat cytomegalovirus, but lack sequence homology to UL41, UL40, and UL37 exon 1 (UL37x1) which are located at the corresponding positions of the human cytomegalovirus genome. Unlike UL37x1 of human cytomegalovirus, which encodes a mitochondrion-localized inhibitor of apoptosis that is essential for virus replication, m41 encodes a protein that localizes to the Golgi apparatus. The murine cytomegalovirus m41 product is the first example of a Golgi-localized protein that prevents premature apoptosis and thus extends the life span of infected cells.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2003
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...