GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (3)
  • 1
    In: mBio, American Society for Microbiology, Vol. 7, No. 1 ( 2016-03-02)
    Abstract: Adenovirus has evolved a number of mechanisms to target host signaling pathways in order to optimize the cellular environment during infection. E4-ORF3 is a small viral protein made early during infection, and it is critical for inactivating host antiviral responses. In addition to its ability to capture and reorganize cellular proteins, E4-ORF3 also regulates posttranslational modifications of target proteins, but little is known about the functional consequences of these modifications. We recently identified TFII-I as a novel target of E4-ORF3 that is relocalized into dynamic E4-ORF3 nuclear structures and subjected to E4-ORF3-mediated SUMO modification. Here, we show that TFII-I is targeted by E4-ORF3 for ubiquitination and proteasomal degradation and that E4-ORF3 stimulates gene expression from a TFII-I-repressed viral promoter. Our findings suggest that the specific targeting of TFII-I by E4-ORF3 is a mechanism to inactivate its antiviral properties. These studies provide further insight into how E4-ORF3 functions to counteract host antiviral responses.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Virology, American Society for Microbiology, Vol. 84, No. 3 ( 2010-02), p. 1527-1535
    Abstract: While the molecular mechanism of membrane fusion by the influenza virus hemagglutinin (HA) protein has been studied extensively in vitro , the role of acid-dependent HA protein activation in virus replication, pathogenesis, and transmission in vivo has not been characterized. To investigate the biological significance of the pH of activation of the HA protein, we compared the properties of four recombinant viruses with altered HA protein acid stability to those of wild-type influenza virus A/chicken/Vietnam/C58/04 (H5N1) in vitro and in mallards. Membrane fusion by wild-type virus was activated at pH 5.9. Wild-type virus had a calculated environmental persistence of 62 days and caused extensive morbidity, mortality, shedding, and transmission in mallards. An N114K mutation that increased the pH of HA activation by 0.5 unit resulted in decreased replication, genetic stability, and environmental stability. Changes of +0.4 and −0.5 unit in the pH of activation by Y23H and K58I mutations, respectively, reduced weight loss, mortality, shedding, and transmission in mallards. An H24Q mutation that decreased the pH of activation by 0.3 unit resulted in weight loss, mortality, clinical symptoms, and shedding similar to those of the wild type. However, the HA-H24 1 Q virus was shed more extensively into drinking water and persisted longer in the environment. The pH of activation of the H5 HA protein plays a key role in the propagation of H5N1 influenza viruses in ducks and may be a novel molecular factor in the ecology of influenza viruses. The data also demonstrate that H5N1 neuraminidase activity increases the pH of activation of the HA protein in vitro .
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2015
    In:  Journal of Virology Vol. 89, No. 3 ( 2015-02), p. 1744-1755
    In: Journal of Virology, American Society for Microbiology, Vol. 89, No. 3 ( 2015-02), p. 1744-1755
    Abstract: Viruses interact with and regulate many host metabolic pathways in order to advance the viral life cycle and counteract intrinsic and extrinsic antiviral responses. The human adenovirus (Ad) early protein E4-ORF3 forms a unique scaffold throughout the nuclei of infected cells and inhibits multiple antiviral defenses, including a DNA damage response (DDR) and an interferon response. We previously reported that the Ad5 E4-ORF3 protein induces sumoylation of Mre11 and Nbs1, which are essential for the DDR, and their relocalization into E4-ORF3-induced nuclear inclusions is required for this modification to occur. In this study, we sought to analyze a global change in ubiquitin-like (Ubl) modifications, with particular focus on SUMO3, by the Ad5 E4-ORF3 protein and to identify new substrates with these modifications. By a comparative proteome-wide approach utilizing immunoprecipitation/mass spectrometry, we found that Ubl modifications of 166 statistically significant lysine sites in 51 proteins are affected by E4-ORF3, and the proteome of modifications spans a diverse range of cellular functions. Ubl modifications of 92% of these identified sites were increased by E4-ORF3. We further analyzed SUMO3 conjugation of several identified proteins. Our findings demonstrated a role for the Ad5 E4-ORF3 protein as a regulator of Ubl modifications and revealed new SUMO3 substrates induced by E4-ORF3. IMPORTANCE The adenovirus E4-ORF3 protein induces dynamic structural changes in the nuclei of infected cells and counteracts host antiviral responses. One of the mechanisms that accounts for this process is the relocalization and sequestration of cellular proteins into an E4-ORF3 nuclear scaffold, but little is known about how this small viral protein affects diverse cellular responses. In this study, we analyzed for the first time the global pattern of ubiquitin-like (Ubl) modifications, with particular focus on SUMO3, altered by E4-ORF3 expression. The results suggest a role for the Ad5 E4-ORF3 protein as a regulator of Ubl modifications and reveal new SUMO3 substrates targeted by E4-ORF3. Our findings propose Ubl modifications as a new mechanism by which E4-ORF3 may modulate cellular protein functions in addition to subnuclear relocalization.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2015
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...