GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Society for Microbiology  (2)
  • 1
    In: Infection and Immunity, American Society for Microbiology, Vol. 91, No. 5 ( 2023-05-16)
    Kurzfassung: Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/ Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4 + and CD8 + T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4 + and CD8 + T cells which were slightly lower. CD4 + and CD8 + T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8 + T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.
    Materialart: Online-Ressource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2023
    ZDB Id: 1483247-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Infection and Immunity, American Society for Microbiology, Vol. 86, No. 12 ( 2018-12)
    Kurzfassung: Tuberculosis (TB), caused by Mycobacterium tuberculosis , is the leading cause of death among human immunodeficiency virus (HIV)-positive patients. The precise mechanisms by which HIV impairs host resistance to a subsequent M. tuberculosis infection are unknown. We modeled this coinfection in Mauritian cynomolgus macaques (MCM) using simian immunodeficiency virus (SIV) as an HIV surrogate. We infected seven MCM with SIVmac239 intrarectally and 6 months later coinfected them via bronchoscope with ∼10 CFU of M. tuberculosis . Another eight MCM were infected with M. tuberculosis alone. TB progression was monitored by clinical parameters, by culturing bacilli in gastric and bronchoalveolar lavages, and by serial [ 18 F]fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging. The eight MCM infected with M. tuberculosis alone displayed dichotomous susceptibility to TB, with four animals reaching humane endpoint within 13 weeks and four animals surviving 〉 19 weeks after M. tuberculosis infection. In stark contrast, all seven SIV + animals exhibited rapidly progressive TB following coinfection and all reached humane endpoint by 13 weeks. Serial PET/CT imaging confirmed dichotomous outcomes in MCM infected with M. tuberculosis alone and marked susceptibility to TB in all SIV + MCM. Notably, imaging revealed a significant increase in TB granulomas between 4 and 8 weeks after M. tuberculosis infection in SIV + but not in SIV-naive MCM and implies that SIV impairs the ability of animals to contain M. tuberculosis dissemination. At necropsy, animals with preexisting SIV infection had more overall pathology, increased bacterial loads, and a trend towards more extrapulmonary disease than animals infected with M. tuberculosis alone. We thus developed a tractable MCM model in which to study SIV- M. tuberculosis coinfection and demonstrate that preexisting SIV dramatically diminishes the ability to control M. tuberculosis coinfection.
    Materialart: Online-Ressource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2018
    ZDB Id: 1483247-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...