GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (63)
  • 1
    In: Journal of Virology, American Society for Microbiology, Vol. 82, No. 11 ( 2008-06), p. 5594-5605
    Abstract: Control of human immunodeficiency virus type 1 (HIV-1) by HLA-B27-positive subjects has been linked to an immunodominant CD8 + cytotoxic T-lymphocyte (CTL) response targeting the conserved KK10 epitope (KRWIILGLNK 263-272 ) in p24/Gag. Viral escape in KK10 typically occurs through development of an R 264 K substitution in conjunction with the upstream compensatory mutation S 173 A, and the difficulty of the virus to escape from the immune response against the KK10 epitope until late in infection has been associated with slower clinical progression. Rare alternative escape mutations at R 264 have been observed, but factors dictating the preferential selection of R 264 K remain unclear. Here we illustrate that while all observed R 264 mutations (K, G, Q, and T) reduced peptide binding to HLA-B27 and impaired viral replication, the replicative defects of the alternative mutants were actually less pronounced than those for R 264 K. Importantly, however, none of these mutants replicated as well as an R 264 K variant containing the compensatory mutation S 173 A. In assessing the combined effects of viral replication and CTL escape using an in vitro coculture assay, we further observed that the compensated R 264 K mutant also displayed the highest replication capacity in the presence of KK10-specific CTLs. Comparisons of codon usage for the respective variants indicated that generation of the R 264 K mutation may also be favored due to a G-to-A bias in nucleotide substitutions during HIV-1 replication. Together, these data suggest that the preference for R 264 K is due primarily to the ability of the S 173 A-compensated virus to replicate better than alternative variants in the presence of CTLs, suggesting that viral fitness is a key contributor for the selection of immune escape variants.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Virology, American Society for Microbiology, Vol. 81, No. 22 ( 2007-11-15), p. 12608-12618
    Abstract: Certain histocompatibility leukocyte antigen (HLA) alleles are associated with improved clinical outcomes for individuals infected with human immunodeficiency virus type 1 (HIV-1), but the mechanisms for their effects remain undefined. An early CD8 + T-cell escape mutation in the dominant HLA-B57-restricted Gag epitope TW10 (TSTLQEQIGW) has been shown to impair HIV-1 replication capacity in vitro. We demonstrate here that this T 242 N substitution in the capsid protein is associated with upstream mutations at residues H 219 , I 223 , and M 228 in the cyclophilin A (CypA)-binding loop in B57 + individuals with progressive disease. In an independent cohort of epidemiologically linked transmission pairs, the presence of these substitutions in viruses encoding T 242 N was associated with significantly higher plasma viremia in donors, further suggesting that these secondary mutations compensated for the replication defect of T 242 N. Using NL4-3 constructs, we illustrate the ability of these CypA loop changes to partially restore replication of the T 242 N variant in vitro. Notably, these mutations also enhanced viral resistance to the drug cyclosporine A, indicating a reduced dependence of the compensated virus on CypA that is normally essential for optimal infectivity. Therefore, mutations in TW10 allow HIV-1 to evade a dominant early CD8 + T-cell response, but the benefits of escape are offset by a defect in capsid function. These data suggest that TW10 escape variants undergo a postentry block that is partially overcome by changes in the CypA-binding loop and identify a mechanism for an HIV-1 fitness defect that may contribute to the slower disease progression associated with HLA-B57.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2007
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Genome Announcements, American Society for Microbiology, Vol. 5, No. 46 ( 2017-11-16)
    Abstract: Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages.
    Type of Medium: Online Resource
    ISSN: 2169-8287
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2017
    detail.hit.zdb_id: 2968655-6
    detail.hit.zdb_id: 2704277-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Virology, American Society for Microbiology, Vol. 82, No. 17 ( 2008-09), p. 8422-8430
    Abstract: Despite reports of viral genetic defects in persons who control human immunodeficiency virus type 1 (HIV-1) in the absence of antiviral therapy, the extent to which such defects contribute to the long-term containment of viremia is not known. Most previous studies examining for such defects have involved small numbers of subjects, primarily focused on subjects expressing HLA-B57, or have examined single viral genes, and they have focused on cellular proviral DNA rather than plasma viral RNA sequences. Here, we attempted viral sequencing from 95 HIV-1 elite controllers (EC) who maintained plasma viral loads of 〈 50 RNA copies/ml in the absence of therapy, the majority of whom did not express HLA-B57. HIV-1 gene fragments were obtained from 94% (89/95) of the EC, and plasma viral sequences were obtained from 78% (61/78), the latter indicating the presence of replicating virus in the majority of EC. Of 63 persons for whom nef was sequenced, only three cases of nef deletions were identified, and gross genetic defects were rarely observed in other HIV-1 coding genes. In a codon-by-codon comparison between EC and persons with progressive infection, correcting for HLA bias and coevolving secondary mutations, a significant difference was observed at only three codons in Gag, all three of which represented the historic population consensus amino acid at the time of infection. These results indicate that the spontaneous control of HIV replication is not attributable to shared viral genetic defects or shared viral polymorphisms.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Virology, American Society for Microbiology, Vol. 93, No. 20 ( 2019-10-15)
    Abstract: BLT (bone marrow-liver-thymus) humanized mice, which reconstitute a functional human immune system, develop prototypic human virus-specific CD8 + T cell responses following infection with human immunodeficiency virus type 1 (HIV-1). We explored the utility of the BLT model for HIV-1 vaccine development by immunizing BLT mice against the conserved viral Gag protein, utilizing a rapid prime-boost protocol of poly(lactic-co-glycolic) acid microparticles and a replication-defective herpes simplex virus (HSV) recombinant vector. After HIV-1 challenge, the mice developed broad, proteome-wide gamma interferon-positive (IFN-γ + ) T cell responses against HIV-1 that reached magnitudes equivalent to what is observed in HIV-1-infected individuals. The functionality of these responses was underscored by the consistent emergence of escape mutations in multiple CD8 + T cell epitopes during the course of infection. Although prechallenge vaccine-induced responses were largely undetectable, the Gag immunization increased both the magnitude and the kinetics of anamnestic Gag-specific T cell responses following HIV-1 infection, and the magnitude of these postchallenge Gag-specific responses was inversely correlated with acute HIV-1 viremia. Indeed, Gag immunization was associated with a modest but significant 0.5-log reduction in HIV-1 viral load when analyzed across four experimental groups of BLT mice. Notably, the HSV vector induced elevated plasma concentrations of polarizing cytokines and chemotactic factors, including interleukin-12p70 (IL-12p70) and MIP-1α, which were positively correlated with the magnitude of Gag-specific responses. Overall, these results support the ability of BLT mice to recapitulate human pathogen-specific T cell responses and to respond to immunization; however, additional improvements to the model are required to develop a robust system for testing HIV-1 vaccine efficacy. IMPORTANCE Advances in the development of humanized mice have raised the possibility of a small-animal model for preclinical testing of an HIV-1 vaccine. Here, we describe the capacity of BLT humanized mice to mount broadly directed HIV-1-specific human T cell responses that are functionally active, as indicated by the rapid emergence of viral escape mutations. Although immunization of BLT mice with the conserved viral Gag protein did not result in detectable prechallenge responses, it did increase the magnitude and kinetics of postchallenge Gag-specific T cell responses, which was associated with a modest but significant reduction in acute HIV-1 viremia. Additionally, the BLT model revealed immunization-associated increases in the plasma concentrations of immunomodulatory cytokines and chemokines that correlated with more robust T cell responses. These data support the potential utility of the BLT humanized mouse for HIV-1 vaccine development but suggest that additional improvements to the model are warranted.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Virology, American Society for Microbiology, Vol. 84, No. 22 ( 2010-11-15), p. 11937-11949
    Abstract: Mutations that allow escape from CD8 T-cell responses are common in HIV-1 and may attenuate pathogenesis by reducing viral fitness. While this has been demonstrated for individual cases, a systematic investigation of the consequence of HLA class I-mediated selection on HIV-1 in vitro replication capacity (RC) has not been undertaken. We examined this question by generating recombinant viruses expressing plasma HIV-1 RNA-derived Gag-Protease sequences from 66 acute/early and 803 chronic untreated subtype B-infected individuals in an NL4-3 background and measuring their RCs using a green fluorescent protein (GFP) reporter CD4 T-cell assay. In acute/early infection, viruses derived from individuals expressing the protective alleles HLA-B*57, -B*5801, and/or -B*13 displayed significantly lower RCs than did viruses from individuals lacking these alleles ( P 〈 0.05). Furthermore, acute/early RC inversely correlated with the presence of HLA-B-associated Gag polymorphisms ( R = −0.27; P = 0.03), suggesting a cumulative effect of primary escape mutations on fitness during the first months of infection. At the chronic stage of infection, no strong correlations were observed between RC and protective HLA-B alleles or with the presence of HLA-B-associated polymorphisms restricted by protective alleles despite increased statistical power to detect these associations. However, RC correlated positively with the presence of known compensatory mutations in chronic viruses from B*57-expressing individuals harboring the Gag T242N mutation ( n = 50; R = 0.36; P = 0.01), suggesting that the rescue of fitness defects occurred through mutations at secondary sites. Additional mutations in Gag that may modulate the impact of the T242N mutation on RC were identified. A modest inverse correlation was observed between RC and CD4 cell count in chronic infection ( R = −0.17; P 〈 0.0001), suggesting that Gag-Protease RC could increase over the disease course. Notably, this association was stronger for individuals who expressed B*57, B*58, or B*13 ( R = −0.27; P = 0.004). Taken together, these data indicate that certain protective HLA alleles contribute to early defects in HIV-1 fitness through the selection of detrimental mutations in Gag; however, these effects wane as compensatory mutations accumulate in chronic infection. The long-term control of HIV-1 in some persons who express protective alleles suggests that early fitness hits may provide lasting benefits.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Virology, American Society for Microbiology, Vol. 90, No. 1 ( 2016-01), p. 33-42
    Abstract: Antiviral CD8 + T cells are a key component of the adaptive immune response against HCV, but their impact on viral control is influenced by preexisting viral variants in important target epitopes and the development of viral escape mutations. Immunodominant epitopes highly conserved across genotypes therefore are attractive for T cell based prophylactic vaccines. Here, we characterized the CD8 + T cell response against the highly conserved HLA-B*51-restricted epitope IPFYGKAI 1373–1380 located in the helicase domain of NS3 in people who inject drugs (PWID) exposed predominantly to HCV genotypes 1a and 3a. Despite this epitope being conserved in both genotypes, the corresponding CD8 + T cell response was detected only in PWID infected with genotype 3a and HCV-RNA negative PWID, but not in PWID infected with genotype 1a. In genotype 3a, the detection of strong CD8 + T cell responses was associated with epitope variants in the autologous virus consistent with immune escape. Analysis of viral sequences from multiple cohorts confirmed HLA-B*51-associated escape mutations inside the epitope in genotype 3a, but not in genotype 1a. Here, a distinct substitution in the N-terminal flanking region located 5 residues upstream of the epitope (S1368P; P = 0.00002) was selected in HLA-B*51-positive individuals. Functional assays revealed that the S1368P substitution impaired recognition of target cells presenting the endogenously processed epitope. The results highlight that, despite an epitope being highly conserved between two genotypes, there are major differences in the selected viral escape pathways and the corresponding T cell responses. IMPORTANCE HCV is able to evolutionary adapt to CD8 + T cell immune pressure in multiple ways. Beyond selection of mutations inside targeted epitopes, this study demonstrates that HCV inhibits epitope processing by modification of the epitope flanking region under T cell immune pressure. Selection of a substitution five amino acids upstream of the epitope underlines that efficient antigen presentation strongly depends on its larger sequence context and that blocking of the multistep process of antigen processing by mutation is exploited also by HCV. The pathways to mutational escape of HCV are to some extent predictable but are distinct in different genotypes. Importantly, the selected escape pathway of HCV may have consequences for the destiny of antigen-specific CD8 + T cells.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2016
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Virology, American Society for Microbiology, Vol. 77, No. 16 ( 2003-08-15), p. 9029-9040
    Abstract: Certain major histocompatibility complex class I (MHC-I) alleles are associated with delayed disease progression in individuals infected with human immunodeficiency virus (HIV) and in macaques infected with simian immunodeficiency virus (SIV). However, little is known about the influence of these MHC alleles on acute-phase cellular immune responses. Here we follow 51 animals infected with SIV mac 239 and demonstrate a dramatic association between Mamu-A*01 and -B*17 expression and slowed disease progression. We show that the dominant acute-phase cytotoxic T lymphocyte (CTL) responses in animals expressing these alleles are largely directed against two epitopes restricted by Mamu-A*01 and one epitope restricted by Mamu-B*17. One Mamu-A*01-restricted response (Tat 28-35 SL8) and the Mamu-B*17-restricted response (Nef 165-173 IW9) typically select for viral escape variants in early SIV mac 239 infection. Interestingly, animals expressing Mamu-A*1 and -B*17 have less variation in the Tat 28-35 SL8 epitope during chronic infection than animals that express only Mamu-A*01. Our results show that MHC-I alleles that are associated with slow progression to AIDS bind epitopes recognized by dominant CTL responses during acute infection and underscore the importance of understanding CTL responses during primary HIV infection.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2003
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Virology, American Society for Microbiology, Vol. 79, No. 16 ( 2005-08-15), p. 10218-10225
    Abstract: Several HLA class I alleles have been associated with slow human immunodeficiency virus (HIV) disease progression, supporting the important role HLA class I-restricted cytotoxic T lymphocytes (CTL) play in controlling HIV infection. HLA-B63, the serological marker for the closely related HLA-B*1516 and HLA-B*1517 alleles, shares the epitope binding motif of HLA-B57 and HLA-B58, two alleles that have been associated with slow HIV disease progression. We investigated whether HIV-infected individuals who express HLA-B63 generate CTL responses that are comparable in breadth and specificity to those of HLA-B57/58-positive subjects and whether HLA-B63-positive individuals would also present with lower viral set points than the general population. The data show that HLA-B63-positive individuals indeed mounted responses to previously identified HLA-B57-restricted epitopes as well as towards novel, HLA-B63-restricted CTL targets that, in turn, can be presented by HLA-B57 and HLA-B58. HLA-B63-positive subjects generated these responses early in acute HIV infection and were able to control HIV replication in the absence of antiretroviral treatment with a median viral load of 3,280 RNA copies/ml. The data support an important role of the presented epitope in mediating relative control of HIV replication and help to better define immune correlates of controlled HIV infection.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Virology, American Society for Microbiology, Vol. 79, No. 13 ( 2005-07), p. 8171-8181
    Abstract: Studies in acute human immunodeficiency virus type 1 (HIV-1) infection indicate viral evolution under CD8 T-cell immune selection pressure, but the effects of ongoing immune pressure on epitope evolution during chronic infection are not well described. In this study, we performed a detailed longitudinal analysis of viral sequence variation within persistently targeted cytotoxic T-lymphocyte (CTL) epitopes in two HIV-1-infected persons during 6 years of persistent viremia. Responses were quantitated using freshly isolated peripheral blood lymphocytes in direct lytic assays as well as by gamma interferon (IFN-γ) Elispot assays on cryopreserved cells. Seven targeted epitopes were identified in each person. In the majority of cases, the dominant epitope sequence did not change over time, even in the presence of responses of sufficient magnitude that they were detectable using fresh peripheral blood mononuclear cells in direct lytic assays. Only 4 of the 14 autologous epitopes tested represented potential CTL escape variants; however, in most cases strong responses to these epitopes persisted for the 6 years of study. Although persistent IFN-γ responses were detected to all epitopes, direct lytic assays demonstrated declining responses to some epitopes despite the persistence of the targeted sequence in vivo. These data indicate limited viral evolution within persistently targeted CD8 T-cell epitopes during the chronic phase of infection and suggest that these regions of the virus are either refractory to sequence change or that persistently activated CD8 T-cell responses in chronic infection exert little functional selection pressure.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2005
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...