GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (15)
  • Biology  (15)
Material
Publisher
  • American Society for Microbiology  (15)
Language
Years
Subjects(RVK)
  • Biology  (15)
RVK
  • 1
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 90, No. 1 ( 2024-01-24)
    Abstract: Single-cell microorganisms are exposed to a range of stressors in both natural and industrial settings. This study investigated the effects of 5-hydroxymethfurural (5-HMF), a major inhibitor found in baked foods and lignocellulosic hydrolysates, on the chromosomal instability of yeast. We examined the mechanisms leading to the distinct patterns of 5-HMF-induced genomic alterations and discovered that chromosomal loss, typically viewed as detrimental to cell growth under most conditions, can contribute to yeast tolerance to 5-HMF. Our results increased the understanding of how specific stressors stimulate genomic plasticity and environmental adaptation in yeast.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2024
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2022
    In:  Applied and Environmental Microbiology Vol. 88, No. 2 ( 2022-01-25)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 88, No. 2 ( 2022-01-25)
    Abstract: Bleomycin (BLM) is a widely used chemotherapeutic drug. BLM-treated cells showed an elevated rate of mutations, but the underlying mechanisms remained unclear. In this study, the global genomic alterations in BLM-treated cells were explored in the yeast Saccharomyces cerevisiae . Using genetic assay and whole-genome sequencing, we found that the mutation rate could be greatly elevated in S. cerevisiae cells that underwent Zeocin (a BLM member) treatment. One-base deletion and T-to-G substitution at the 5′-GT-3′ motif represented the most striking signature of Zeocin-induced mutations. This was mainly the result of translesion DNA synthesis involving Rev1 and polymerase ζ. Zeocin treatment led to the frequent loss of heterozygosity and chromosomal rearrangements in the diploid strains. The breakpoints of recombination events were significantly associated with certain chromosomal elements. Lastly, we identified multiple genomic alterations that contributed to BLM resistance in the Zeocin-treated mutants. Overall, this study provides new insights into the genotoxicity and evolutional effects of BLM. IMPORTANCE Bleomycin is an antitumor antibiotic that can mutate genomic DNA. Using yeast models in combination with genome sequencing, the mutational signatures of Zeocin (a member of the bleomycin family) are disclosed. Translesion-synthesis polymerases are crucial for the viability of Zeocin-treated yeast cells at the sacrifice of a higher mutation rate. We also confirmed that multiple genomic alterations were associated with the improved resistance to Zeocin, providing novel insights into how bleomycin resistance is developed in cells.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 88, No. 18 ( 2022-09-22)
    Abstract: Synergistic regulation of the expression of various genes in a catabolic pathway is crucial for the degradation, survival, and adaptation of microorganisms in polluted environments. However, how a single regulator accurately regulates and controls differential transcriptions of various catabolic genes to ensure metabolic safety remains largely unknown. Here, a LysR-type transcriptional regulator (LTTR), OdcR, encoded by the regulator gene odcR , was confirmed to be essential for 3,5-dibromo-4-hydroxybenozate (DBHB) catabolism and simultaneously activated the transcriptions of a gene with unknown function, orf419 , and three genes, odcA , odcB , and odcC , involved in the DBHB catabolism in Pigmentiphaga sp. strain H8. OdcB further metabolized the highly toxic intermediate 2,6-dibromohydroquinone, which was produced from DBHB by OdcA. The upregulated transcriptional level of odcB was 7- to 9-fold higher than that of orf419 , odcA , or odcC in response to DBHB. Through an electrophoretic mobility shift assay and DNase I footprinting assay, DBHB was found to be the effector and essential for OdcR binding to all four promoters of orf419 , odcA, odcB , and odcC . A single nucleotide mutation in the regulatory binding site (RBS) of the promoter of odcB ( T AT-N 11 -ATG), compared to those of odcA / orf419 ( C AT-N 11 -ATG) and odcC ( C AT-N 11 -ATT), was identified and shown to enable the significantly higher transcription of odcB . The precise regulation of these genes by OdcR via a single nucleotide mutation in the promoter avoided the accumulation of 2,6-dibromohydroquinone, ensuring the metabolic safety of DBHB. IMPORTANCE Prokaryotes use various mechanisms, including improvement of the activity of detoxification enzymes, to cope with toxic intermediates produced during catabolism. However, studies on how bacteria accurately regulate differential transcriptions of various catabolic genes via a single regulator to ensure metabolic safety are scarce. This study revealed a LysR-type transcriptional activator, OdcR, which strongly activated odcB transcription for the detoxification of the toxic intermediate 2,6-dibromohydroquinone and slightly activated the transcriptions of other genes ( orf419 , odcA , and odcC ) for 3,5-dibromo-4-hydroxybenozate (DBHB) catabolism in Pigmentiphaga sp. strain H8. Interestingly, the differential transcription/expression of the four genes, which ensured the metabolic safety of DBHB in cells, was determined by a single nucleotide mutation in the regulatory binding sites of the four promoters. This study describes a new and ingenious regulatory mode of ensuring metabolic safety in bacteria, expanding our understanding of synergistic transcriptional regulation in prokaryotes.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 84, No. 19 ( 2018-10)
    Abstract: Prorocentrum donghaiense blooms occur frequently in the Yangtze River estuary and the adjacent East China Sea. These blooms have damaged marine ecosystems and caused enormous economic losses over the past 2 decades. Thus, highly efficient, low-cost, ecofriendly approaches must be developed to control P. donghaiense blooms. In this study, a bacterial strain (strain Y42) was identified as Paracoccus sp. and was used to lyse P. donghaiense . The supernatant of the strain Y42 culture was able to lyse P. donghaiense , and the algicidal activity of this Y42 supernatant was stable with different temperatures and durations of light exposure and over a wide pH range. In addition to P. donghaiense , Y42 showed high algicidal activity against Alexandrium minutum , Scrippsiella trochoidea , and Skeletonema costatum , suggesting that it targets primarily Pyrrophyta. To clarify the algicidal effects of Y42, we assessed algal lysis and determined the chlorophyll a contents, photosynthetic activity, and malondialdehyde contents of P. donghaiense after exposure to the Y42 supernatant. Scanning electron microscopy and transmission electron microscopy analyses showed that the Y42 supernatant disrupted membrane integrity and caused algal cell breakage at the megacytic zone. Photosynthetic pigment loss and significant declines in both photosynthetic efficiency and the electron transport rate indicated that the Y42 supernatant damaged the photosynthetic system of P. donghaiense . Malondialdehyde overproduction indicated that the Y42 supernatant caused lipid peroxidation and oxidative damage to membrane systems in the algal cell, ultimately leading to death. The findings of this study reveal the potential of Y42 to remove algal cells from P. donghaiense blooms. IMPORTANCE P. donghaiense is one of the most common dinoflagellate species that form harmful algal blooms, which frequently cause serious ecological pollution and pose health hazards to humans and other animals. Screening for bacteria with high algicidal activity against P. donghaiense and studying their algicidal processes and characteristics will contribute to an understanding of their algicidal effects and provide a theoretical basis for preventing algal blooms and reducing their harm to the environment. This study reports the algicidal activity and characteristics of Paracoccus against P. donghaiense . The stability of the algicidal activity of Paracoccus in different environments (including different temperature, pH, and sunlight conditions) indicates its potential for use in the control of P. donghaiense blooms.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 90, No. 7 ( 2024-07-24)
    Abstract: Bacteria may enter VBNC state under different harsh environments. Pathogenic VBNC bacteria cells in clinical and environmental samples pose a potential threat to public health because cells cannot be found by routine culture. The alcohol-producing Kpn VBNC state was not reported, and the influencing factors were unknown. The formation and recovery of VBNC state is a complete bacterial escape process. We evaluated the influence of multiple induction conditions on the formation of VBNC state and recovery from antibiotic and bacteriophage inhibition, and established a sensitive molecular method to enumerate the VBNC cells single-copy gene. The method can improve the sensitivity of pathogen detection in clinical, food, and environmental contamination monitoring, and outbreak warning. The study of the formation and recovery of VBNC-state cells under different stress environments will also promote the microbiological research on the development, adaptation, and resuscitation in VBNC-state ecology.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2024
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 85, No. 14 ( 2019-07-15)
    Abstract: Minicircle DNA (mcDNA), which contains only the necessary components for eukaryotic expression and is thus smaller than traditional plasmids, has been designed for application in genetic manipulation. In this study, we constructed a novel plasmid containing both the Cre recombinase under the phosphoglycerate kinase (PGK) promoter and recombinant lox66 and lox71 sites located outside the cytomegalovirus (CMV) expression cassette. The strictly controlled synthesis of Cre recombinase in vivo maintained the complete form of the plasmid in vitro , whereas the in vivo production of Cre transformed the parental plasmid to mcDNA after transfection. The newly designed C re r ecombinase-mediated i n vivo m cDNA platform, named CRIM, significantly increased the nuclear entry of mcDNA, followed by increased production of mRNA and protein, using enhanced green fluorescent protein (EGFP) as a model. Similar results were also observed in chickens when the vaccine was delivered by the regulated-delayed-lysis Salmonella strain χ11218, where significantly increased production of EGFP was observed in chicken livers. Then, we used the HN gene of genotype VII Newcastle disease virus as an antigen model to construct the traditional plasmid pYL43 and the novel mcDNA plasmid pYL47. After immunization, our CRIM vaccine provided significantly increased protection against challenge compared with that of the traditional plasmid, providing us with a novel mcDNA vaccine platform. IMPORTANCE Minicircle DNA (mcDNA) has been considered an attractive alternative to DNA vaccines; however, the relatively high cost and complicated process of purifying mcDNA dramatically restricts the application of mcDNA in the veterinary field. We designed a novel in vivo mcDNA platform in which the complete plasmid could spontaneously transform into mcDNA in vivo . In combination with the regulated-delayed-lysis Salmonella strain, the newly designed mcDNA vaccine provides us with an elegant platform for veterinary vaccine development.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2019
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 86, No. 20 ( 2020-10)
    Abstract: Thermomyces dupontii , a widely distributed thermophilic fungus, is an ideal organism for investigating the mechanism of thermophilic fungal adaptation to diverse environments. However, genetic analysis of this fungus is hindered by a lack of available and efficient gene-manipulating tools. In this study, two different Cas9 proteins from mesophilic and thermophilic bacteria, with in vivo expression of a single guide RNA (sgRNA) under the control of tRNA Gly , were successfully adapted for genome editing in T. dupontii . We demonstrated the feasibility of applying these two gene editing systems to edit one or two genes in T. dupontii . The mesophilic CRISPR/Cas9 system displayed higher editing efficiency (50 to 86%) than the thermophilic CRISPR/Cas9 system (40 to 67%). However, the thermophilic CRISPR/Cas9 system was much less time-consuming than the mesophilic CRISPR/Cas9 system. Combining the CRISPR/Cas9 systems with homologous recombination, a constitutive promoter was precisely knocked in to activate a silent polyketide synthase-nonribosomal peptide synthase (PKS-NRPS) biosynthetic gene, leading to the production of extra metabolites that did not exist in the parental strains. Metabolic analysis of the generated biosynthetic gene mutants suggested that a key biosynthetic pathway existed for the biosynthesis of thermolides in T. dupontii , with the last two steps being different from those in the heterologous host Aspergillus . Further analysis suggested that these biosynthetic genes might be involved in fungal mycelial growth, conidiation, and spore germination, as well as in fungal adaptation to osmotic, oxidative, and cell wall-perturbing agents. IMPORTANCE Thermomyces represents a unique ecological taxon in fungi, but a lack of flexible genetic tools has greatly hampered the study of gene function in this taxon. The biosynthesis of potent nematicidal thermolides in T. dupontii remains largely unknown. In this study, mesophilic and thermophilic CRISPR/Cas9 gene editing systems were successfully established for both disrupting and activating genes in T. dupontii . In this study, a usable thermophilic CRISPR/Cas9 gene editing system derived from bacteria was constructed in thermophilic fungi. Chemical analysis of the mutants generated by these two gene editing systems identified the key biosynthetic genes and pathway for the biosynthesis of nematocidal thermolides in T. dupontii . Phenotype analysis and chemical stress experiments revealed potential roles of secondary metabolites or their biosynthetic genes in fungal development and adaption to chemical stress conditions. These two genomic editing systems will not only accelerate investigations into the biosynthetic mechanisms of unique natural products and functions of cryptic genes in T. dupontii but also offer an example for setting up CRISPR/Cas9 systems in other thermophilic fungi.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 89, No. 9 ( 2023-09-28)
    Abstract: Conidiation is the most common reproductive mode for many filamentous fungi and plays an essential role in the pathogenicity of fungal pathogens. Nematode-trapping (NT) fungi are a special group of filamentous fungi owing to their innate abilities to capture and digest nematodes by producing traps (trapping devices). Sporulation plays an important role in the growth and reproduction of NT fungi, and conidia are the basic components of biocontrol reagents for controlling diseases caused by plant-parasitic nematodes. Arthrobotrys oligospora is a well-known NT fungus and is a routinely used model fungus for probing the interaction between fungi and nematodes. In this study, the functions of four key regulators (AoMedA, AoBrlA, AoAbaA, and AoWetA) involved in conidiation were characterized in A. oligospora . A complex interaction between AoMedA and three central regulators was noted; these regulators are required for conidiation and trap formation and play a pleiotropic role in multiple intracellular activities. Our study first revealed the role of AoMedA and three central regulators in conidiation, trap formation, and pathogenicity of A. oligospora , which contributed to elucidating the regulatory mechanism of conidiation in NT fungi and helped in developing effective reagents for biocontrol of nematodes.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society for Microbiology ; 2024
    In:  Applied and Environmental Microbiology Vol. 90, No. 4 ( 2024-04-17)
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 90, No. 4 ( 2024-04-17)
    Abstract: Noncanonical amino acids (ncAAs) have shown great potential in protein engineering and enzyme evolution through genetic code expansion. However, in most cases, ncAAs must be provided exogenously during protein expression, which hinders their application, especially when they are expensive or have poor cell membrane penetration. Engineering cells with artificial metabolic pathways to biosynthesize ncAAs and employing them in situ for protein engineering and enzyme evolution could facilitate their application and reduce costs. Here, we attempted to evolve the fluorescent consensus green protein (CGP) with biosynthesized ncAAs. Our results demonstrated the feasibility of using biosynthesized ncAAs in protein engineering, which could further stimulate the application of ncAAs in bioengineering and biomedicine.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2024
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 84, No. 6 ( 2018-03-15)
    Abstract: The compound 3,5-dibromo-4-hydroxybenzoate (DBHB) is both anthropogenically released into and naturally produced in the environment, and its environmental fate is of great concern. Aerobic and anaerobic reductive dehalogenations are the only two reported pathways for DBHB catabolism. In this study, a new oxidative decarboxylation pathway for DBHB catabolism was identified in a DBHB-utilizing strain, Pigmentiphaga sp. strain H8. The genetic determinants underlying this pathway were elucidated based on comparative transcriptome analysis and subsequent experimental validation. A gene cluster comprising orf420 to orf426 , with transcripts that were about 33- to 4,400-fold upregulated in DBHB-induced cells compared with those in uninduced cells, was suspected to be involved in DBHB catabolism. The gene odcA ( orf420 ), which is essential for the initial catabolism of DBHB, encodes a novel NAD(P)H-dependent flavin monooxygenase that mediates the oxidative decarboxylation of DBHB to 2,6-dibromohydroquinone (2,6-DBHQ). The substrate specificity of the purified OdcA indicated that the 4-hydroxyl group and its ortho -halogen(s) are important for hydroxylation of the C-1 site carboxyl group by OdcA. 2,6-DBHQ is then ring cleaved by the dioxygenase OdcB (Orf425) to 2-bromomaleylacetate, which is finally transformed to β-ketoadipate by the maleylacetate reductase OdcC (Orf426). These results provide a better understanding of the molecular mechanism underlying the catabolic diversity of halogenated para -hydroxybenzoates. IMPORTANCE Halogenated hydroxybenzoates (HBs), which are widely used synthetic precursors for chemical products and common metabolic intermediates from halogenated aromatics, exert considerable adverse effects on human health and ecological security. Microbial catabolism plays key roles in the dissipation of halogenated HBs in the environment. In this study, the discovery of a new catabolic pathway for 3,5-dibromo-4-hydroxybenzoate (DBHB) and clarification of the genetic determinants underlying the pathway broaden our knowledge of the catabolic diversity of halogenated HBs in microorganisms. Furthermore, the NAD(P)H-dependent flavin monooxygenase OdcA identified in Pigmentiphaga sp. strain H8 represents a novel 1-monooxygenase for halogenated para -HBs found in prokaryotes and enhances our knowledge of the decarboxylative hydroxylation of (halogenated) para -HBs.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...