GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (7)
Material
Publisher
  • American Society for Microbiology  (7)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2001
    In:  Journal of Bacteriology Vol. 183, No. 3 ( 2001-02), p. 915-920
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 183, No. 3 ( 2001-02), p. 915-920
    Abstract: The cell cycle of the chlorophyll b -possessing marine cyanobacterium Prochlorococcus is highly synchronized under natural conditions. To understand the underlying molecular mechanisms we cloned and sequenced dnaA and ftsZ , two key cell cycle-associated genes, and studied their expression. An axenic culture of Prochlorococcus sp. strain PCC 9511 was grown in a turbidostat with a 12 h–12 h light-dark cycle for 2 weeks. During the light periods, a dynamic light regimen was used in order to simulate the natural conditions found in the upper layers of the world's oceans. This treatment resulted in strong cell cycle synchronization that was monitored by flow cytometry. The steady-state mRNA levels of dnaA and ftsZ were monitored at 4-h intervals during four consecutive division cycles. Both genes exhibited clear diel expression patterns with mRNA maxima during the replication (S) phase. Western blot experiments indicated that the peak of FtsZ concentration occurred at night, i.e., at the time of cell division. Thus, the transcript accumulation of genes involved in replication and division is coordinated in Prochlorococcus sp. strain PCC 9511 and might be crucial for determining the timing of DNA replication and cell division.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2001
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 1995
    In:  Applied and Environmental Microbiology Vol. 61, No. 7 ( 1995-07), p. 2506-2513
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 61, No. 7 ( 1995-07), p. 2506-2513
    Abstract: Because of their tiny size (0.2 to 2 microns), oceanic picophytoplanktonic cells (either cultured strains or natural communities) are difficult to identify, and some basic questions concerning their taxonomy, physiology, and ecology are still largely unanswered. The present study was designed to test the suitability of in situ hybridization with rRNA fluorescent probes detected by flow cytometry for the identification of small photosynthetic eukaryotes. Oligonucleotide probes targeted against regions of the 18S rRNAs of Chlorophyta lineage (CHLO probe) and of non-Chlorophyta (NCHLO probe) algal species were designed. The CHLO and NCHLO probes, which differed by a single nucleotide, allowed discrimination of chlorophyte from nonchlorophyte cultured strains. The sensitivity of each probe was dependent upon the size of the cells and upon their growth stage. The mean fluorescence was 8 to 80 times higher for specifically labeled than for nonspecifically labeled cells in exponential growth phase, but it decreased sharply in stationary phase. Such taxon-specific probes should increase the applicability of flow cytometry for the rapid identification of cultured pico- and nanoplanktonic strains, especially those that lack taxonomically useful morphological features.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1995
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 1997
    In:  Applied and Environmental Microbiology Vol. 63, No. 1 ( 1997-01), p. 186-193
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 63, No. 1 ( 1997-01), p. 186-193
    Abstract: The novel dye SYBR Green I binds specifically to nucleic acids and can be excited by blue light (488-nm wavelength). Cell concentrations of prokaryotes measured in marine samples with this dye on a low-cost compact flow cytometer are comparable to those obtained with the UV-excited stain Hoechst 33342 (bis-benzimide) on an expensive flow cytometer with a water-cooled laser. In contrast to TOTO-1 and TO-PRO-1, SYBR Green I has the advantage of clearly discriminating both heterotrophic bacteria and autotrophic Prochlorococcus cells, even in oligotrophic waters. As with TOTO-1 and TO-PRO-1, two groups of heterotrophic bacteria (B-I and B-II-like types) can be distinguished. Moreover, the resolution of DNA distribution obtained with SYBR Green I is similar to that obtained with Hoechst 33342 and permits the analysis of the cell cycle of photosynthetic prokaryotes over the whole water column.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1997
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Society for Microbiology ; 1996
    In:  Applied and Environmental Microbiology Vol. 62, No. 7 ( 1996-07), p. 2527-2533
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 62, No. 7 ( 1996-07), p. 2527-2533
    Abstract: The effect of phosphorus (P) and nitrogen (N) additions on the Synechococcus cell cycle was tested with natural populations from the Mediterranean Sea in summer. In the absence of stimulation, the Synechococcus cell cycle was synchronized to the light-dark cycle. DNA synthesis began around 1600, a maximum of S-phase cells was observed at around dusk (2100), and a maximum of G(inf2)-phase cells was observed at around 2400. Addition of P (as PO(inf4)(sup3-)) caused, in all cases, a decrease in the fraction of cells in G(inf2) at around 1800, no change at around 2400, and an increase at around 1200 the next day, while addition of N (as NO(inf3)(sup-)) had no effect. We hypothesize that P addition induced a shortening of the G(inf1) phase, resulting in cells entering and leaving the S and G(inf2) phases earlier. These data suggest very strongly that the Synechococcus cells were P limited rather than N limited during this period of the year. In most cases, additions as low as 20 nM P induced a cell cycle response. From dose-response curves, we established that the P concentration inducing a 50% change in the percentage of cells in G(inf2) was low, close to 10 nM, at the beginning of the sampling period (30 June) and increased to about 50 nM by the end (9 July), suggesting a decrease in the severity of P limitation. This study extends recent observations that oligotrophic systems may be P rather than N limited at certain times of the year.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1996
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 1996
    In:  Applied and Environmental Microbiology Vol. 62, No. 5 ( 1996-05), p. 1649-1655
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 62, No. 5 ( 1996-05), p. 1649-1655
    Abstract: Novel blue light-excited fluorescent dyes for nucleic acids (YOYO-1, YO-PRO-1, and PicoGreen) were tested on cultures of Escherichia coli and of a variety of marine prokaryotes. Results of flow cytometric DNA analyses were compared with those obtained with the UV-excited dyes bis-benzimide Hoechst 33342 or 4', 6-diamidino-2-phenylindole (DAPI). YOYO-1, YO-PRO-1, and PicoGreen can be used only on aldehyde-fixed cells and need to be supplemented with cofactors such as potassium, citrate, or EDTA. They are highly sensitive to ionic strength. Consequently, seawater culture samples cannot be stained directly with these dyes and require at least a 10-fold dilution with distilled water to obtain reliable fluorescence signals. After treatment with RNase, coefficients of variation for the G1 peak of the DNA distributions of the different strains tested with YOYO-1 or PicoGreen indicated in general an improvement over Hoechst 33342 staining. These novel dyes can be used to enumerate prokaryotic cells by flow cytometry, as demonstrated with E. coli. However, their sensitivity to ionic strength makes them unsuitable for cell cycle analysis in natural samples.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1996
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 1999
    In:  Microbiology and Molecular Biology Reviews Vol. 63, No. 1 ( 1999-03), p. 106-127
    In: Microbiology and Molecular Biology Reviews, American Society for Microbiology, Vol. 63, No. 1 ( 1999-03), p. 106-127
    Abstract: The minute photosynthetic prokaryote Prochlorococcus, which was discovered about 10 years ago, has proven exceptional from several standpoints. Its tiny size (0.5 to 0.7 μm in diameter) makes it the smallest known photosynthetic organism. Its ubiquity within the 40°S to 40°N latitudinal band of oceans and its occurrence at high density from the surface down to depths of 200 m make it presumably the most abundant photosynthetic organism on Earth. Prochlorococcus typically divides once a day in the subsurface layer of oligotrophic areas, where it dominates the photosynthetic biomass. It also possesses a remarkable pigment complement which includes divinyl derivatives of chlorophyll a (Chl a) and Chl b, the so-called Chl a 2 and Chl b 2 , and, in some strains, small amounts of a new type of phycoerythrin. Phylogenetically, Prochlorococcus has also proven fascinating. Recent studies suggest that it evolved from an ancestral cyanobacterium by reducing its cell and genome sizes and by recruiting a protein originally synthesized under conditions of iron depletion to build a reduced antenna system as a replacement for large phycobilisomes. Environmental constraints clearly played a predominant role in Prochlorococcus evolution. Its tiny size is an advantage for its adaptation to nutrient-deprived environments. Furthermore, genetically distinct ecotypes, with different antenna systems and ecophysiological characteristics, are present at depth and in surface waters. This vertical species variation has allowed Prochlorococcus to adapt to the natural light gradient occurring in the upper layer of oceans. The present review critically assesses the basic knowledge acquired about Prochlorococcus both in the ocean and in the laboratory.
    Type of Medium: Online Resource
    ISSN: 1092-2172 , 1098-5557
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 2026768-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society for Microbiology ; 1999
    In:  Applied and Environmental Microbiology Vol. 65, No. 1 ( 1999-01), p. 45-52
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 65, No. 1 ( 1999-01), p. 45-52
    Abstract: Flow cytometry (FCM) was successfully used to enumerate viruses in seawater after staining with the nucleic acid-specific dye SYBR Green-I. The technique was first optimized by using the Phaeocystis lytic virus PpV-01. Then it was used to analyze natural samples from different oceanic locations. Virus samples were fixed with 0.5% glutaraldehyde and deep frozen for delayed analysis. The samples were then diluted in Tris-EDTA buffer and analyzed in the presence of SYBR Green-I. A duplicate sample was heated at 80°C in the presence of detergent before analysis. Virus counts obtained by FCM were highly correlated to, although slightly higher than, those obtained by epifluorescence microscopy or by transmission electron microscopy ( r = 0.937, n = 14, and r = 0.96, n = 8, respectively). Analysis of a depth profile from the Mediterranean Sea revealed that the abundance of viruses displayed the same vertical trend as that of planktonic cells. FCM permits us to distinguish between at least two and sometimes three virus populations in natural samples. Because of its speed and accuracy, FCM should prove very useful for studies of virus infection in cultures and should allow us to better understand the structure and dynamics of virus populations in natural waters.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1999
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...