GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Society for Microbiology
    In:  Applied and Environmental Microbiology, 80 (12). pp. 3721-3728.
    Publication Date: 2019-09-23
    Description: Analyzing the dynamics of biofilm formation helps to deepen our understanding of surface colonization in natural environments. While methods for screening biofilm formation in the laboratory are well established, studies in marine environments have so far been based upon destructive analysis of individual samples and provide only discontinuous snapshots of biofilm establishment. In order to explore the development of biofilm over time and under various biotic and abiotic conditions, we applied a recently developed optical biofilm sensor to quasicontinuously analyze marine biofilm dynamics in situ. Using this technique in combination with microscope-assisted imaging, we investigated biofilm formation from its beginning to mature multispecies biofilms. In contrast to laboratory studies on biofilm formation, a smooth transition from initial attachment to colony formation and exponential growth could not be observed in the marine environment. Instead, initial attachment was followed by an adaptation phase of low growth and homogeneously distributed solitary bacterial cells. Moreover, we observed a diurnal variation of biofilm signal intensity, suggesting a transient state of biofilm formation of bacteria. Overall, the biofilm formation dynamics could be modeled by three consecutive development stages attributed to initial bacterial attachment, bacterial growth, and attachment and growth of unicellular eukaryotic microorganisms. Additional experiments showed that the presence of seaweed considerably shortened the adaptation phase in comparison with that on control surfaces but yielded similar growth rates. The outlined examples highlight the advantages of a quasicontinuous in situ detection that enabled, for the first time, the exploration of the initial attachment phase and the diurnal variation during biofilm formation in natural ecosystems
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-21
    Description: Background-Combined analysis of 2 genome-wide association studies in cases enriched for family history recently identified 7 loci (on 1p13.3, 1q41, 2q36.3, 6q25.1, 9p21, 10q11.21, and 15q22.33) that may affect risk of coronary artery disease (CAD). Apart from the 9p21 locus, the other loci await substantive replication. Furthermore, the effect of these loci on CAD risk in a broader range of individuals remains to be determined.Methods and Results-We undertook association analysis of single nucleotide polymorphisms at each locus with CAD risk in 11 550 cases and 11 205 controls from 9 European studies. The 9p21.3 locus showed unequivocal association (rs1333049, combined odds ratio [OR]=1.20, 95% CI [1.16 to 1.25], probability value=2.81x10(-21)). We also confirmed association signals at 1p13.3 (rs599839, OR=1.13 [1.08 to 1.19], P=1.44x10(-7)), 1q41 (rs3008621, OR=1.10 [1.04 to 1.17], P=1.02x10(-3)), and 10q11.21 (rs501120, OR=1.11 [1.05 to 1.18], P=4.34x10(-4)). The associations with 6q25.1 (rs6922269, P=0.020) and 2q36.3 (rs2943634, P=0.032) were borderline and not statistically significant after correction for multiple testing. The 15q22.33 locus did not replicate. The 10q11.21 locus showed a possible sex interaction (P = 0.015), with a significant effect in women (OR=1.29 [1.15 to 1.45], P=1.86x10(-5)) but not men (OR=1.03 [0.96 to 1.11], P=0.387). There were no other strong interactions of any of the loci with other traditional risk factors. The loci at 9p21, 1p13.3, 2q36.3, and 10q11.21 acted independently and cumulatively increased CAD risk by 15% (12% to 18%), per additional risk allele. ConclusionsThe findings provide strong evidence for association between at least 4 genetic loci and CAD risk. Cumulatively, these novel loci have a significant impact on risk of CAD at least in European populations. (Arterioscler Thromb Vasc Biol. 2009; 29: 774-780.)
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-17
    Print ISSN: 0940-5550
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Philosophy
    Published by oekom
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-15
    Description: This article is currently available as a free download on Ingenta Connect
    Print ISSN: 0940-5550
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Philosophy
    Published by oekom
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...