GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (1)
  • Elsevier  (1)
  • 1
    Publication Date: 2017-10-24
    Description: The Southern Ocean is the world's largest high nutrient low chlorophyll (HNLC) region. However, satellite images highlight several areas associated with island chains and shallow topographic features which display high phytoplankton biomass. Here we present the first study of seasonal variations in phytoplankton biomass and iron availability in the Scotia Sea over both austral spring and summer seasons. Based on dissolved iron (dFe) and Chlorophyll a (Chl a) concentrations, the study area is be divided into three regions: North of South Georgia, south of South Georgia and the vicinity of South Orkney Islands. The Scotia Sea to the south of South Georgia exhibited low dFe concentrations (〈0.027-0.05 nM) in surface waters during both the spring and summer seasons. Nevertheless, nitrate concentrations were considerably lower in spring compared to summer (difference similar to 8 mu M). Summer Chl a concentrations were similar to 1.4 mg m(-3) and in situ phytoplankton populations displayed evidence of iron stress, suggesting the development of seasonal iron limitation. Surface water dFe concentrations in the South Georgia bloom waters (north of the islands) were elevated and slightly lower during spring than summer (0.20 nM compared to 0.31 nM, P 〉 0.05). Nitrate concentrations were 16 mu M lower in summer compared to spring, whilst Chl a standing stocks remained high. Enhanced dFe (similar to 0.25 nM) and Chl a concentrations were furthermore observed in the vicinity of the South Orkney Islands, located in the southern Scotia Sea. Iron addition experiments showed that in situ phytoplankton were iron replete spring and summer north of South Georgia and in the vicinity of South Orkney Islands during summer. We thus suggest that increased iron supply in high productivity areas including the area north of South Georgia and the South Orkney Islands, was sustained by a continuous benthic supply from their shelf systems, with a potential additional input from seasonally retreating sea ice in the South Orkney system
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Applied and Environmental Microbiology 84 (2018): e02034-17, doi:10.1128/AEM.02034-17.
    Description: Phytoplankton replace phosphorus-containing lipids (P-lipids) with non-P analogues, boosting growth in P-limited oceans. In the model diatom Thalassiosira pseudonana, the substitution dynamics of lipid headgroups are well described, but those of the individual lipids, differing in fatty acid composition, are unknown. Moreover, the behavior of lipids outside the common headgroup classes and the relationship between lipid substitution and cellular particulate organic P (POP) have yet to be reported. We investigated these through the mass spectrometric lipidomics of P-replete (P+) and P-depleted (P−) T. pseudonana cultures. Nonlipidic POP was depleted rapidly by the initiation of P stress, followed by the cessation of P-lipid biosynthesis and per-cell reductions in the P-lipid levels of successive generations. Minor P-lipid degradative breakdown was observed, releasing P for other processes, but most P-lipids remained intact. This may confer an advantage on efficient heterotrophic lipid consumers in P-limited oceans. Glycerophosphatidylcholine (PC), the predominant P-lipid, was similar in composition to its betaine substitute lipid. During substitution, PC was less abundant per cell and was more highly unsaturated in composition. This may reflect underlying biosynthetic processes or the regulation of membrane biophysical properties subject to lipid substitution. Finally, levels of several diglycosylceramide lipids increased as much as 10-fold under P stress. These represent novel substitute lipids and potential biomarkers for the study of P limitation in situ, contributing to growing evidence highlighting the importance of sphingolipids in phycology. These findings contribute much to our understanding of P-lipid substitution, a powerful and widespread adaptation to P limitation in the oligotrophic ocean.
    Description: This work was funded by the University of Southampton Vice Chancellors Scholarship Award.
    Keywords: Thalassiosira pseudonana ; Phospholipid ; Sphingolipid ; Diatom ; Lipidomics ; Phosphorus ; Stress ; Limitation ; Substitution ; Biomarker
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...