GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Cell Biology (ASCB)  (2)
Material
Publisher
  • American Society for Cell Biology (ASCB)  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Society for Cell Biology (ASCB) ; 2010
    In:  Molecular Biology of the Cell Vol. 21, No. 12 ( 2010-06-15), p. 1955-1967
    In: Molecular Biology of the Cell, American Society for Cell Biology (ASCB), Vol. 21, No. 12 ( 2010-06-15), p. 1955-1967
    Abstract: The meiosis-specific mug28 + gene of Schizosaccharomyces pombe encodes a putative RNA-binding protein with three RNA recognition motifs (RRMs). Live observations of meiotic cells that express Mug28 tagged with green fluorescent protein (GFP) revealed that Mug28 is localized in the cytoplasm, and accumulates around the nucleus from metaphase I to anaphase II. Disruption of mug28 + generated spores with low viability, due to the aberrant formation of the forespore membrane (FSM). Visualization of the FSM in living cells expressing GFP-tagged Psy1, an FSM protein, indicated that mug28Δ cells harbored abnormal FSMs that contained buds, and had a delayed disappearance of Meu14, a leading edge protein. Electron microscopic observation revealed that FSM formation was abnormal in mug28Δ cells, showing bifurcated spore walls that were thicker than the nonbifurcated spore walls of the wild type. Analysis of Mug28 mutants revealed that RRM3, in particular phenylalanin-466, is of primary importance for the proper localization of Mug28, spore viability, and FSM formation. Together, we conclude that Mug28 is essential for the proper maturation of the FSM and the spore wall.
    Type of Medium: Online Resource
    ISSN: 1059-1524 , 1939-4586
    Language: English
    Publisher: American Society for Cell Biology (ASCB)
    Publication Date: 2010
    detail.hit.zdb_id: 1474922-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Biology of the Cell, American Society for Cell Biology (ASCB), Vol. 10, No. 12 ( 1999-12), p. 3991-4003
    Abstract: We report here the isolation and functional analysis of therfc3 + gene of Schizosaccharomyces pombe, which encodes the third subunit of replication factor C (RFC3). Because the rfc3 + gene was essential for growth, we isolated temperature-sensitive mutants. One of the mutants, rfc3-1, showed aberrant mitosis with fragmented or unevenly separated chromosomes at the restrictive temperature. In this mutant protein, arginine 216 was replaced by tryptophan. Pulsed-field gel electrophoresis suggested that rfc3-1cells had defects in DNA replication. rfc3-1 cells were sensitive to hydroxyurea, methanesulfonate (MMS), and gamma and UV irradiation even at the permissive temperature, and the viabilities after these treatments were decreased. Using cells synchronized in early G2 by centrifugal elutriation, we found that the replication checkpoint triggered by hydroxyurea and the DNA damage checkpoint caused by MMS and gamma irradiation were impaired inrfc3-1 cells. Association of Rfc3 and Rad17 in vivo and a significant reduction of the phosphorylated form of Chk1 inrfc3-1 cells after treatments with MMS and gamma or UV irradiation suggested that the checkpoint signal emitted by Rfc3 is linked to the downstream checkpoint machinery via Rad17 and Chk1. From these results, we conclude that rfc3 + is required not only for DNA replication but also for replication and damage checkpoint controls, probably functioning as a checkpoint sensor.
    Type of Medium: Online Resource
    ISSN: 1059-1524 , 1939-4586
    Language: English
    Publisher: American Society for Cell Biology (ASCB)
    Publication Date: 1999
    detail.hit.zdb_id: 1474922-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...