GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Physiological Genomics, American Physiological Society, Vol. 21, No. 2 ( 2005-04-14), p. 212-221
    Abstract: Wilms’ tumor gene ( WT1) is important for nephrogenesis and gonadal growth. WT1 mutations cause Denys-Drash and Frasier syndromes, which are characterized by glomerular scarring. To test whether genetic variations in WT1 and WIT1 (gene immediately 5′ to WT1) associate with focal segmental glomerulosclerosis (FSGS), patients with biopsy-proven idiopathic and HIV-1-associated FSGS were enrolled in a multicenter study. We genotyped SNP rs6508 located in WIT1 exon 1, three SNPs (rs2301250, rs2301252, rs2301254) in the promoter shared by WT1 and WIT1, rs2234590 in exon 6, rs2234591 in intron 6, rs16754 in exon 7, and rs1799937 in intron 9 of WT1. Cases ( n = 218) and controls ( n = 281) were compared in the African American population. Stratification by HIV-1 infection status showed that SNPs rs6508, rs2301254, and rs1799937 were significantly associated with FSGS [rs6508 odds ratio (OR) 1.82, P = 0.006; rs2301254 OR 1.65, P = 0.049; rs1799937 OR 1.91, P = 0.005] in the non-HIV-1 group and rs2234591 (OR 0.234, P = 0.011) in the HIV-1 group. Haplotype analyses in the population revealed that seven SNPs were associated with FSGS; five SNPs had the highest contingency score [−log 10 ( P value) = 13.57] in the HIV-1 group. This association could not be explained by population substructure. We conclude that SNPs in WT1 and WIT1 genes are significantly associated with FSGS, suggesting that variants in these genes may mediate pathogenesis by altering WT1 function. Furthermore, HIV-1 infection status interacts with genetic variations in both genes to influence this phenotype. We speculate that nephropathy liability alleles in WT1 pathway genes cause podocyte dysfunction and glomerular scarring.
    Type of Medium: Online Resource
    ISSN: 1094-8341 , 1531-2267
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2005
    detail.hit.zdb_id: 2031330-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2017
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 313, No. 2 ( 2017-08-01), p. H408-H420
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 313, No. 2 ( 2017-08-01), p. H408-H420
    Abstract: The relevance of right atrial pressure (RAP) as the backpressure for venous return (Q VR ) and mean systemic filling pressure as upstream pressure is controversial during dynamic changes of circulation. To examine the immediate response of Q VR (sum of caval vein flows) to changes in RAP and pump function, we used a closed-chest, central cannulation, heart bypass porcine preparation ( n = 10) with venoarterial extracorporeal membrane oxygenation. Mean systemic filling pressure was determined by clamping extracorporeal membrane oxygenation tubing with open or closed arteriovenous shunt at euvolemia, volume expansion (9.75 ml/kg hydroxyethyl starch), and hypovolemia (bleeding 19.5 ml/kg after volume expansion). The responses of RAP and Q VR were studied using variable pump speed at constant airway pressure (P AW ) and constant pump speed at variable P AW . Within each volume state, the immediate changes in Q VR and RAP could be described with a single linear regression, regardless of whether RAP was altered by pump speed or P AW ( r 2 = 0.586–0.984). RAP was inversely proportional to pump speed from zero to maximum flow ( r 2 = 0.859–0.999). Changing P AW caused immediate, transient, directionally opposite changes in RAP and Q VR (RAP: P ≤ 0.002 and Q VR : P ≤ 0.001), where the initial response was proportional to the change in Q VR driving pressure. Changes in P AW generated volume shifts into and out of the right atrium, but their effect on upstream pressure was negligible. Our findings support the concept that RAP acts as backpressure to Q VR and that Guyton’s model of circulatory equilibrium qualitatively predicts the dynamic response from changing RAP. NEW & NOTEWORTHY Venous return responds immediately to changes in right atrial pressure. Concomitant volume shifts within the systemic circulation due to an imbalance between cardiac output and venous return have negligible effects on mean systemic filling pressure. Guyton’s model of circulatory equilibrium can qualitatively predict the resulting changes in dynamic conditions with right atrial pressure as backpressure to venous return.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2017
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Physiological Society ; 1942
    In:  American Journal of Physiology-Legacy Content Vol. 137, No. 4 ( 1942-11-01), p. 658-670
    In: American Journal of Physiology-Legacy Content, American Physiological Society, Vol. 137, No. 4 ( 1942-11-01), p. 658-670
    Type of Medium: Online Resource
    ISSN: 0002-9513
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1942
    detail.hit.zdb_id: 1477334-X
    detail.hit.zdb_id: 2065807-2
    detail.hit.zdb_id: 1477287-5
    detail.hit.zdb_id: 1477308-9
    detail.hit.zdb_id: 1477297-8
    detail.hit.zdb_id: 1477331-4
    detail.hit.zdb_id: 1477300-4
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...