GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (2)
Material
Publisher
  • American Physiological Society  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2002
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 283, No. 5 ( 2002-11-01), p. H1929-H1935
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 283, No. 5 ( 2002-11-01), p. H1929-H1935
    Abstract: In six sheep, radiopaque markers were placed on the left ventricle (LV), the mitral annulus, the left atrium (LA), and the central edge of both mitral leaflets to investigate the effects of acute LV ischemia on atrial contraction, mitral annular area (MAA), and mitral regurgitation (MR). Animals were studied with biplane videofluoroscopy and transesophageal echocardiography before and during balloon occlusion of the left anterior descending (LAD), distal circumflex (dLCX), and proximal circumflex (pLCX) coronary arteries. MAA and LA area were calculated from the corresponding markers. LAD occlusion did not alter LA area reduction or presystolic MAA reduction, whereas dLCX occlusion resulted in a mild decrease in the former with no change in the latter. Neither occlusion resulted in MR. pLCX occlusion, however, significantly decreased LA area and presystolic MAA reduction and resulted in increased end-diastolic MAA, delayed valve closure from end diastole, and MR. Decreased atrial contractile function, as observed during acute posterolateral ischemia, is linked to diminished presystolic mitral annular reduction, a larger mitral annular size at end diastole, and MR.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2002
    detail.hit.zdb_id: 603838-4
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2003
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 285, No. 4 ( 2003-10), p. H1668-H1674
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 285, No. 4 ( 2003-10), p. H1668-H1674
    Abstract: Mitral annular (MA) and leaflet three-dimensional (3-D) dynamics were examined after circumferential phenol ablation of the MA and anterior mitral leaflet (AML) muscle. Radiopaque markers were sutured to the left ventricle, MA, and both mitral leaflets in 18 sheep. In 10 sheep, phenol was applied circumferentially to the atrial surface of the mitral annulus and the hinge region of the AML, whereas 8 sheep served as controls. Animals were studied with biplane video fluoroscopy for computation of 3-D mitral annular area (MAA) and leaflet shape. MAA contraction (MAA Cont ) was determined from maximum to minimum value. Presystolic MAA (PS-MAA Cont ) reduction was calculated as the percentage of total reduction occurring before end diastole. Phenol ablation decreased PS-MAA Cont (72 ± 6 vs. 47 ± 31%, P = 0.04) and delayed valve closure (31 ± 11 vs. 57 ± 25 ms, P = 0.017). In control, the AML had a compound sigmoid shape; after phenol, this shape was entirely concave to the atrium during valve closure. These data indicate that myocardial fibers on the atrial side of the valve influence the 3-D dynamic geometry and shape of the MA and AML.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2003
    detail.hit.zdb_id: 603838-4
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...