GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (2)
Material
Publisher
  • American Physiological Society  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2000
    In:  Journal of Neurophysiology Vol. 83, No. 1 ( 2000-01-01), p. 563-587
    In: Journal of Neurophysiology, American Physiological Society, Vol. 83, No. 1 ( 2000-01-01), p. 563-587
    Abstract: Smooth pursuit and vestibularly induced eye movements interact to maintain the accuracy of eye movements in space (i.e., gaze). To understand the role played by the frontal eye fields in pursuit-vestibular interactions, we examined activity of 110 neurons in the periarcuate areas of head-stabilized Japanese monkeys during pursuit eye movements and passive whole-body rotation. The majority (92%) responded with the peak of their modulation near peak stimulus velocity during suppression of the vestibuloocular reflex (VOR) when the monkeys tracked a target that moved with the same amplitude and phase and in the same plane as the chair. We classified pursuit-related neurons ( n = 100) as gaze- velocity if their peak modulation occurred for eye (pursuit) and head (VOR suppression) movements in the same direction; the amplitude of modulation during one less than twice that of the other; and modulation was lower during target-stationary-in-space condition (VOR ×1) than during VOR suppression. In addition, we examined responses during VOR enhancement (×2) in which the target moved with equal amplitude as, but opposite direction to, the chair. Gaze-velocity neurons responded maximally for opposite directions during VOR ×2 and suppression. Based on these criteria, the majority of pursuit-related neurons (66%) were classified as gaze-velocity with preferred directions uniformly distributed. Because the majority of the remaining cells (32/34) also responded during VOR suppression, they were classified as eye/head-velocity neurons. Thirteen preferred pursuit and VOR suppression in the same direction; 13 in the opposite direction, and 6 showed biphasic modulation during VOR suppression. Eye- and gaze-velocity sensitivity of the two groups of cells were similar; mean (± SD) was 0.53 ± 0.30 and 0.50 ± 0.44 spikes/s per °/s, respectively. Gaze-velocity (but not eye/head-velocity) neurons showed significant correlation between eye- and gaze-velocity sensitivity, and both groups maintained their responses when the tracking target was extinguished briefly. The majority of pursuit-related neurons (28/43 = about 65%) responded to chair rotation in complete darkness. When the monkeys fixated a stationary target, more than half of cells tested (21/40) discharged in proportion to the velocity of retinal motion of a second laser spot (mean velocity sensitivity = 0.20 ± 0.16 spikes/s per °/s). Preferred directions of individual cells to the second spot were similar to those during pursuit. Visual responses to the second spot movement were maintained even when it was extinguished briefly. These results indicate that both retinal image- and gaze-velocity signals are carried by single periarcuate pursuit-related neurons, suggesting that these signals can provide target-velocity-in-space and gaze-velocity commands during pursuit-vestibular interactions.
    Type of Medium: Online Resource
    ISSN: 0022-3077 , 1522-1598
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2000
    detail.hit.zdb_id: 80161-6
    detail.hit.zdb_id: 1467889-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2002
    In:  Journal of Neurophysiology Vol. 87, No. 4 ( 2002-04-01), p. 1836-1849
    In: Journal of Neurophysiology, American Physiological Society, Vol. 87, No. 4 ( 2002-04-01), p. 1836-1849
    Abstract: To track a slowly moving object during whole body rotation, smooth-pursuit and vestibularly induced eye movements must interact to maintain the accuracy of eye movements in space (i.e., gaze), and gaze movement signals must eventually be converted into eye movement signals in the orbit. To understand the role played by the cerebellar vermis in pursuit-vestibular interactions, in particular whether the output of the vermis codes gaze-velocity or eye-velocity, we examined simple-spike activity of 58 Purkinje (P-) cells in lobules VI–VII of head-stabilized Japanese monkeys that were trained to elicit smooth-pursuit eye movements and cancel their vestibuloocular reflex (VOR) during passive whole body rotation around horizontal, vertical, or oblique axes. All pursuit-sensitive vermal P-cells also responded during VOR cancellation, and the majority of them had peak modulation near peak stimulus velocity. The directions of maximum modulation during these two tasks were distributed in all directions with a downward preponderance. Using standard criteria, 40% of pursuit-sensitive vermal P-cells were classified as gaze-velocity. Other P-cells were classified either as eye/head-velocity group I (36%) that had similar preferred directions during pursuit and VOR cancellation but that had larger responses during VOR ×1 when gaze remained stationary, or as eye/head-velocity group II (24%) that had oppositely directed or orthogonal eye and head movement sensitivity during pursuit and VOR cancellation. Eye/head-velocity group I P-cells contained cells whose activity was correlated with eye velocity. Modulation of many P-cells of the three groups during VOR ×1 could be accounted for by the linear addition of their modulations during pursuit and VOR cancellation. When monkeys fixated a stationary target, over half of the P-cells tested, including gaze-velocity P-cells, discharged in proportion to the velocity of retinal motion of a second spot. These observations are in a striking contrast to our previous results for floccular vertical P-cells. Because we used identical tasks, these differences suggest that the two cerebellar regions are involved in very different kinds of processing of pursuit-vestibular interactions.
    Type of Medium: Online Resource
    ISSN: 0022-3077 , 1522-1598
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2002
    detail.hit.zdb_id: 80161-6
    detail.hit.zdb_id: 1467889-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...