GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (19)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2016
    In:  American Journal of Physiology-Cell Physiology Vol. 311, No. 3 ( 2016-09-01), p. C378-C385
    In: American Journal of Physiology-Cell Physiology, American Physiological Society, Vol. 311, No. 3 ( 2016-09-01), p. C378-C385
    Abstract: We have previously demonstrated that low-energy extracorporeal cardiac shock wave (SW) therapy improves myocardial ischemia through enhanced myocardial angiogenesis in a porcine model of chronic myocardial ischemia and in patients with refractory angina pectoris. However, the detailed molecular mechanisms for the SW-induced angiogenesis remain unclear. In this study, we thus examined the effects of SW irradiation on intracellular signaling pathways in vitro. Cultured human umbilical vein endothelial cells (HUVECs) were treated with 800 shots of low-energy SW (1 Hz at an energy level of 0.03 mJ/mm 2 ). The SW therapy significantly upregulated mRNA expression and protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS). The SW therapy also enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) and Akt. Furthermore, the SW therapy enhanced phosphorylation of caveolin-1 and the expression of HUTS-4 that represents β 1 -integrin activity. These results suggest that caveolin-1 and β 1 -integrin are involved in the SW-induced activation of angiogenic signaling pathways. To further examine the signaling pathways involved in the SW-induced angiogenesis, HUVECs were transfected with siRNA of either β 1 -integrin or caveolin-1. Knockdown of either caveolin-1 or β 1 -integrin suppressed the SW-induced phosphorylation of Erk1/2 and Akt and upregulation of VEGF and eNOS. Knockdown of either caveolin-1 or β 1 -integrin also suppressed SW-induced enhancement of HUVEC migration in scratch assay. These results suggest that activation of mechanosensors on cell membranes, such as caveolin-1 and β 1 -integrin, and subsequent phosphorylation of Erk and Akt may play pivotal roles in the SW-induced angiogenesis.
    Type of Medium: Online Resource
    ISSN: 0363-6143 , 1522-1563
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2016
    detail.hit.zdb_id: 1477334-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2010
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 299, No. 2 ( 2010-08), p. H437-H445
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 299, No. 2 ( 2010-08), p. H437-H445
    Abstract: Ischemic preconditioning (IPC) is a powerful phenomenon that provides potent cardioprotection in mammalian hearts; however, the role of endothelial nitric oxide (NO) synthase (eNOS)-mediated NO in this process remains highly controversial. Questions also remain regarding this pathway as a function of sex and ischemic duration. Therefore, we performed extensive experiments in wild-type (WT) and eNOS knockout (eNOS −/− ) mice to evaluate whether the infarct-limiting effect of IPC depends on eNOS, ischemic periods, and sex. Classical IPC was induced by three cycles of 5 min of regional coronary ischemia separated by 5 min of reperfusion and was followed by 30 or 60 min of sustained ischemia and 24 h of reperfusion. The control ischemia-reperfusion protocol had 30 or 60 min of ischemia followed by 24 h of reperfusion. Protection was evaluated by measuring the myocardial infarct size as a percentage of the area at risk. The major findings were that regardless of sex, WT mice exhibited robust IPC with significantly smaller myocardial infarction, whereas eNOS −/− mice did not. IPC-induced cardiac protection was absent in eNOS −/− mice of both Jackson and Harvard origin. In general, female WT mice had smaller infarctions compared with male WT mice. Although prolonged ischemia caused significantly larger infarctions in WT mice of both sexes, they were consistently protected by IPC. Importantly, prolonged myocardial ischemia was associated with increased mortality in eNOS −/− mice, and the survival rate was higher in female eNOS −/− mice compared with male eNOS −/− mice. In conclusion, IPC protects WT mice against in vivo myocardial ischemia-reperfusion injury regardless of sex and ischemic duration, but the deletion of eNOS abolishes the cardioprotective effect of classical IPC.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2010
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 285, No. 1 ( 2003-07), p. H173-H182
    Abstract: We previously demonstrated that sustained disturbance of endothelium-dependent vasorelaxation and poor distal runoff in ischemic limbs were critical factors affecting the neointimal development of autologous vein grafts (VGs). Also, we recently showed the superior therapeutic potential of basic fibroblast growth factor (bFGF/FGF-2) boosted by the recombinant Sendai virus (SeV) for severe limb ischemia compared with that of vascular endothelial growth factor. Here, the effect of FGF-2 on neointimal hyperplasia of VGs was examined in a rabbit model of poor-runoff limbs. Two weeks after initial surgery for the induction of poor-runoff, SeV-expressing human FGF-2 (SeV-hFGF2) or that encoding firefly luciferase (10 9 plaque-forming units/head) was injected into the thigh and calf muscle. At that time, the femoral vein was implanted in the femoral artery in an end-to-end manner in some groups. FGF-2 gene-transferred limbs demonstrated significantly increased blood flow assessed not only by laser Doppler flow image but also by ultrasonic transit-time flowmeter (USTF). USTF also showed a significant increase in the blood flow ratio of the deep femoral artery to external iliac artery, indicating that collateral flow was significantly restored in the thigh muscles ( P 〈 0.01). Reduction of neointimal hyperplasia was also observed in the VGs treated by SeV-hFGF2; these grafts demonstrated significant restoration of endothelium-dependent vasorelaxation. These findings thus extend the indications of therapeutic angiogenesis using SeV-hFGF2 to include not only limb salvage but also prevention of late graft failure.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2003
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Physiological Society ; 2001
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 280, No. 1 ( 2001-01-01), p. H68-H75
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 280, No. 1 ( 2001-01-01), p. H68-H75
    Abstract: Recent evidence suggests the possibility that enhanced inactivation of endothelium-derived nitric oxide (NO) by oxygen free radical (OFR) may cause endothelial dysfunction in heart failure (HF). To test this hypothesis, we examined the effect of antioxidant therapy on endothelium-dependent vasodilation of the coronary circulation in a canine model of tachycardia-induced HF. Endothelium-dependent vasodilation was less than that in controls, and OFR formation in coronary arterial and myocardial tissues was greater in HF dogs than those in controls. The immunohistochemical staining of 4-hydroxy-2-nonenal, OFR-induced lipid peroxides was detected in coronary microvessels of HF dogs. Intracoronary infusion of the cell-permeable OFR scavenger Tiron inhibited OFR formation and improved endothelium-dependent vasodilation in HF dogs but not in controls. The NO synthesis inhibitor N G -monomethyl-l-arginine (l-NMMA) diminished the beneficial effect of Tiron in HF dogs. Endothelium-independent vasodilation was similar between control and HF dogs, and no change in its response was noted by Tiron or Tiron plus l-NMMA in either group. In summary, antioxidant treatment with Tiron improved coronary vascular endothelium-dependent vasodilation by increasing NO activity in tachycardia-induced HF. Thus coronary endothelial dysfunction in HF may be, at least in part, due to increased inactivation of NO by OFR.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2001
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 294, No. 1 ( 2008-01), p. H441-H448
    Abstract: We have recently demonstrated that endothelium-derived hydrogen peroxide (H 2 O 2 ) is an endothelium-derived hyperpolarizing factor and that endothelial Cu/Zn-superoxide dismutase (SOD) plays an important role in the synthesis of endogenous H 2 O 2 in both animals and humans. We examined whether SOD plays a role in the synthesis of endogenous H 2 O 2 during in vivo reactive hyperemia (RH), an important regulatory mechanism. Mesenteric arterioles from wild-type and Cu,Zn-SOD −/− mice were continuously observed by a pencil-type charge-coupled device (CCD) intravital microscope during RH (reperfusion after 20 and 60 s of mesenteric artery occlusion) in the cyclooxygenase blockade under the following four conditions: control, catalase alone, N G -monomethyl-l-arginine (l-NMMA) alone, and l-NMMA + catalase. Vasodilatation during RH was significantly decreased by catalase or l-NMMA alone and was almost completely inhibited by l-NMMA + catalase in wild-type mice, whereas it was inhibited by l-NMMA and l-NMMA + catalase in the Cu,Zn-SOD −/− mice. RH-induced increase in blood flow after l-NMMA was significantly increased in the wild-type mice, whereas it was significantly reduced in the Cu,Zn-SOD −/− mice. In mesenteric arterioles of the Cu,Zn-SOD −/− mice, Tempol, an SOD mimetic, significantly increased the ACh-induced vasodilatation, and the enhancing effect of Tempol was decreased by catalase. Vascular H 2 O 2 production by fluorescent microscopy in mesenteric arterioles after RH was significantly increased in response to ACh in wild-type mice but markedly impaired in Cu,Zn-SOD −/− mice. Endothelial Cu,Zn-SOD plays an important role in the synthesis of endogenous H 2 O 2 that contributes to RH in mouse mesenteric smaller arterioles.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2008
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Physiological Society ; 2001
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 281, No. 6 ( 2001-12-01), p. H2619-H2625
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 281, No. 6 ( 2001-12-01), p. H2619-H2625
    Abstract: Recent evidence suggests that increased inactivation of endothelium-derived nitric oxide (NO) by oxygen free radical (OFR) formation is involved in the pathogenesis of endothelial dysfunction in heart failure (HF). However, it is unclear whether increased OFR limits coronary flow reserve in HF. To test this hypothesis, we examined the effects of antioxidant therapy on coronary flow reserve in a canine model of tachycardia-induced HF. The flow reserve (percent increase in coronary blood flow) to adenosine or to 20-s ischemia was less and OFR formation (electron-spin resonance spectroscopy) in myocardial tissues was greater in HF dogs than in controls. Immunohistochemical staining of 4-hydroxy-2-nonenal, an OFR-induced lipid peroxide, was detected in coronary microvessels of HF dogs. Intracoronary infusion of a cell-permeable OFR scavenger, tiron, suppressed OFR formation and improved the vasodilating capacity to adenosine or brief ischemia in HF dogs but not in controls. A NO synthesis inhibitor, N G -monomethyl-l-arginine (l-NMMA), diminished the beneficial effects of tiron in HF dogs. Vasodilation to sodium nitroprusside was similar between control and HF dogs, and no change in its response was noted with tiron or tiron + l-NMMA in either group. In summary, antioxidant treatment with tiron improved coronary flow reserve by increasing NO bioactivity in HF dogs. Thus increased OFR formation may impair coronary flow reserve in HF by reducing NO bioactivity.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2001
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Physiological Society ; 2019
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 316, No. 4 ( 2019-04-01), p. H900-H910
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 316, No. 4 ( 2019-04-01), p. H900-H910
    Abstract: Although increased levels of reactive oxygen species (ROS) are involved in the pathogenesis of cardiovascular diseases, the importance of physiological ROS has also been emerging. We have previously demonstrated that endothelium-derived H 2 O 2 is an endothelium-dependent hyperpolarization (EDH) factor and that loss of endothelial caveolin-1 reduces EDH/H 2 O 2 in the microcirculation. Caveolin-1 (Cav-1) is a scaffolding/regulatory protein that interacts with diverse signaling pathways, including angiogenesis. However, it remains unclear whether endothelial Cav-1 plays a role in ischemic angiogenesis by modulating EDH/H 2 O 2 . In the present study, we thus addressed this issue in a mouse model of hindlimb ischemia using male endothelium-specific Cav-1 (eCav-1) knockout (KO) mice. In isometric tension experiments with femoral arteries from eCav-1-KO mice, reduced EDH-mediated relaxations to acetylcholine and desensitization of sodium nitroprusside-mediated endothelium-independent relaxations were noted ( n = 4~6). An ex vivo aortic ring assay also showed that the extent of microvessel sprouting was significantly reduced in eCav-1-KO mice compared with wild-type (WT) littermates ( n = 12 each). Blood flow recovery at 4 wk assessed with a laser speckle flowmeter after femoral artery ligation was significantly impaired in eCav-1-KO mice compared with WT littermates ( n = 10 each) and was associated with reduced capillary density and muscle fibrosis in the legs ( n = 6 each). Importantly, posttranslational protein modifications by reactive nitrogen species and ROS, as evaluated by thiol glutathione adducts and nitrotyrosine, respectively, were both increased in eCav-1-KO mice ( n = 6~7 each). These results indicate that endothelial Cav-1 plays an important role in EDH-mediated vasodilatation and ischemic angiogenesis through posttranslational protein modifications by nitrooxidative stress in mice in vivo. NEW & NOTEWORTHY Although increased levels of reactive oxygen species (ROS) are involved in the pathogenesis of cardiovascular diseases, the importance of physiological ROS has also been emerging. The present study provides a line of novel evidence that endothelial caveolin-1 plays important roles in endothelium-dependent hyperpolarization and ischemic angiogenesis in hindlimb ischemia in mice through posttranslational protein modifications by reactive nitrogen species and ROS in mice in vivo.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2019
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: American Journal of Physiology-Renal Physiology, American Physiological Society, Vol. 312, No. 1 ( 2017-01-01), p. F33-F42
    Abstract: The specific roles of nitric oxide (NO) synthases (NOSs) in bladder smooth muscle remain to be elucidated. We examined the roles of NOSs in β-adrenoceptor (AR)-mediated bladder relaxation. Male mice (C57BL6) deficient of neuronal NOS [nNOS-knockout (KO)], endothelial NOS (eNOS-KO), neuronal/endothelial NOS (n/eNOS-KO), neuronal/endothelial/inducible NOS (n/e/iNOS-KO), and their controls [wild-type (WT)] were used. Immunohistochemical analysis was performed in the bladder. Then the responses to relaxing agents and the effects of several inhibitors on the relaxing responses were examined in bladder strips precontracted with carbachol. Immunofluorescence staining showed expressions of nNOS and eNOS in the urothelium and smooth muscle of the bladder. Isoproterenol-induced relaxations were significantly reduced in nNOS-KO mice and were further reduced in n/eNOS-KO and n/e/iNOS-KO mice compared with WT mice. The relaxation in n/e/iNOS-KO mice was almost the same as in n/eNOS-KO mice. Inhibition of Ca 2+ -activated K + (K Ca ) channel with charybdotoxin and apamin abolished isoproterenol-induced bladder relaxation in WT mice. Moreover, direct activation of K Ca channel with NS1619 caused comparable extent of relaxations among WT, nNOS-KO, and n/eNOS-KO mice. In contrast, NONOate (a NO donor) or hydrogen peroxide (H 2 O 2 ) (another possible relaxing factor from eNOS) caused minimal relaxations, and catalase (H 2 O 2 scavenger) had no inhibitory effects on isoproterenol-induced relaxations. These results indicate that both nNOS and eNOS are substantially involved in β-AR-mediated bladder relaxations in a NO- or H 2 O 2 -independent manner through activation of K Ca channels.
    Type of Medium: Online Resource
    ISSN: 1931-857X , 1522-1466
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2017
    detail.hit.zdb_id: 1477287-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Physiological Society ; 2018
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 314, No. 5 ( 2018-05-01), p. H940-H953
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 314, No. 5 ( 2018-05-01), p. H940-H953
    Abstract: Endothelium-dependent hyperpolarization (EDH) plays important roles in the systemic circulation, whereas its role in the pulmonary circulation remains largely unknown. Furthermore, the underlying mechanisms of pulmonary hypertension (PH) also remain to be elucidated. We thus aimed to elucidate the role of EDH in pulmonary circulation in general and in PH in particular. In isolated perfused lung and using male wild-type mice, endothelium-dependent relaxation to bradykinin (BK) was significantly reduced in the presence of N ω -nitro-l-arginine by ~50% compared with those in the presence of indomethacin, and the combination of apamin plus charybdotoxin abolished the residual relaxation, showing the comparable contributions of nitric oxide (NO) and EDH in the pulmonary microcirculation under physiological conditions. Catalase markedly inhibited EDH-mediated relaxation, indicating the predominant contribution of endothelium-derived H 2 O 2 . BK-mediated relaxation was significantly reduced at day 1 of hypoxia, whereas it thereafter remained unchanged until day 28. EDH-mediated relaxation was diminished at day 2 of hypoxia, indicating a transition from EDH to NO in BK-mediated relaxation before the development of hypoxia-induced PH. Mechanistically, chronic hypoxia enhanced endothelial NO synthase expression and activity associated with downregulation of caveolin-1. Nitrotyrosine levels were significantly higher in vascular smooth muscle of pulmonary microvessels under chronic hypoxia than under normoxia. A similar transition of the mediators in BK-mediated relaxation was also noted in the Sugen hypoxia mouse model. These results indicate that EDH plays important roles in the pulmonary microcirculation in addition to NO under normoxic conditions and that impaired EDH-mediated relaxation and subsequent nitrosative stress may be potential triggers of the onset of PH. NEW & NOTEWORTHY This study provides novel evidence that both endothelium-dependent hyperpolarization and nitric oxide play important roles in endothelium-dependent relaxation in the pulmonary microcirculation under physiological conditions in mice and that hypoxia first impairs endothelium-dependent hyperpolarization-mediated relaxation, with compensatory upregulation of nitric oxide, before the development of hypoxia-induced pulmonary hypertension.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2018
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 291, No. 3 ( 2006-09), p. H1138-H1146
    Abstract: We have recently demonstrated that endogenous H 2 O 2 plays an important role in coronary autoregulation in vivo. However, the role of H 2 O 2 during coronary ischemia-reperfusion (I/R) injury remains to be examined. In this study, we examined whether endogenous H 2 O 2 also plays a protective role in coronary I/R injury in dogs in vivo. Canine subepicardial small coronary arteries (≥100 μm) and arterioles ( 〈 100 μm) were continuously observed by an intravital microscope during coronary I/R (90/60 min) under cyclooxygenase blockade ( n = 50). Coronary vascular responses to endothelium-dependent vasodilators (ACh) were examined before and after I/R under the following seven conditions: control, nitric oxide (NO) synthase (NOS) inhibitor N G -monomethyl-l-arginine (l-NMMA), catalase (a decomposer of H 2 O 2 ), 8-sulfophenyltheophylline (8-SPT, an adenosine receptor blocker), l-NMMA + catalase, l-NMMA + tetraethylammonium (TEA, an inhibitor of large-conductance Ca 2+ -sensitive potassium channels), and l-NMMA + catalase + 8-SPT. Coronary I/R significantly impaired the coronary vasodilatation to ACh in both sized arteries (both P 〈 0.01); l-NMMA reduced the small arterial vasodilatation (both P 〈 0.01), whereas it increased ( P 〈 0.05) the ACh-induced coronary arteriolar vasodilatation associated with fluorescent H 2 O 2 production after I/R. Catalase increased the small arterial vasodilatation ( P 〈 0.01) associated with fluorescent NO production and increased endothelial NOS expression, whereas it decreased the arteriolar response after I/R ( P 〈 0.01). l-NMMA + catalase, l-NMMA + TEA, or l-NMMA + catalase + 8-SPT further decreased the coronary vasodilatation in both sized arteries (both, P 〈 0.01). l-NMMA + catalase, l-NMMA + TEA, and l-NMMA + catalase + 8-SPT significantly increased myocardial infarct area compared with the other four groups (control, l-NMMA, catalase, and 8-SPT; all, P 〈 0.01). These results indicate that endogenous H 2 O 2 , in cooperation with NO, plays an important cardioprotective role in coronary I/R injury in vivo.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2006
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...