GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (1)
Material
Publisher
  • American Physiological Society  (1)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2013
    In:  American Journal of Physiology-Endocrinology and Metabolism Vol. 304, No. 7 ( 2013-04-01), p. E695-E702
    In: American Journal of Physiology-Endocrinology and Metabolism, American Physiological Society, Vol. 304, No. 7 ( 2013-04-01), p. E695-E702
    Abstract: Mitral valve endothelial cells are important for maintaining lifelong mitral valve integrity and function. Plasma endothelial microparticles (EMPs) increased in various pathological conditions related to activation of endothelial cells. However, whether EMPs will increase in mitral valve disease and their relationship remains unclear. Here, 81 patients with mitral valve disease and 45 healthy subjects were analyzed for the generation of EMPs by flow cytometry. Human mitral valve endothelial cells (HMVECs) were treated with EMPs. The phosphorylation of Akt and endothelial nitric oxide synthase (eNOS), the association of eNOS and heat shock protein 90 (HSP90), and the generation of nitric oxide (NO) and superoxide anion (O 2 ˙ − ) were measured. EMPs were increased significantly in patients with mitral valve disease compared with those in healthy subjects. EMPs were negatively correlated with mitral valve area in patients with isolated mitral stenosis. EMPs were significantly higher in the group with severe mitral regurgitation than those in the group with mild and moderate mitral regurgitation. Furthermore, EMPs were decreased dramatically in both Akt and eNOS phosphorylation and the association of HSP90 with eNOS in HMVECs. EMPs decreased NO production but increased O 2 ˙ − generation in HMVECs. Our data demonstrated that EMPs were significantly increased in patients with mitral valve disease. The increase of EMPs can in turn impair HMVEC function by inhibiting the Akt/eNOS-HSP90 signaling pathway. These findings suggest that EMPs may be a therapeutic target for mitral valve disease.
    Type of Medium: Online Resource
    ISSN: 0193-1849 , 1522-1555
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2013
    detail.hit.zdb_id: 1477331-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...