GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (2)
Material
Publisher
  • American Physiological Society  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2014
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 306, No. 2 ( 2014-01-15), p. G102-G110
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 306, No. 2 ( 2014-01-15), p. G102-G110
    Abstract: Riboflavin, also known as vitamin B 2 , is transported across the biological membrane into various organs by transport systems. Riboflavin transporter RFVT3 is expressed in the small intestine and has been suggested to localize in the apical membranes of the intestinal epithelial cells. In this study, we investigated the functional involvement of RFVT3 in riboflavin absorption using intestinal epithelial T84 cells and mouse small intestine. T84 cells expressed RFVT3 and conserved unidirectional riboflavin transport corresponding to intestinal absorption. Apical [ 3 H]riboflavin uptake was pH-dependent in T84 cells. This uptake was not affected by Na + depletion at apical pH 6.0, although it was significantly decreased at apical pH 7.4. The [ 3 H]riboflavin uptake from the apical side of T84 cells was prominently inhibited by the RFVT3 selective inhibitor methylene blue and significantly decreased by transfection of RFVT3-small-interfering RNA. In the gastrointestinal tract, RFVT3 was expressed in the jejunum and ileum. Mouse jejunal and ileal permeabilities of [ 3 H]riboflavin were measured by the in situ closed-loop method and were significantly reduced by methylene blue. These results strongly suggest that RFVT3 would functionally be involved in riboflavin absorption in the apical membranes of intestinal epithelial cells.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2014
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2014
    In:  American Journal of Physiology-Renal Physiology Vol. 307, No. 12 ( 2014-12-15), p. F1404-F1411
    In: American Journal of Physiology-Renal Physiology, American Physiological Society, Vol. 307, No. 12 ( 2014-12-15), p. F1404-F1411
    Abstract: Acute kidney injury (AKI) often correlates with poor prognosis and is followed by various severe unfavorable systemic outcomes. It is important to understand the pathophysiology of AKI for the development of novel therapeutic approaches toward promoting renal regeneration after injury. Recent studies have indicated that AKI-induced tubular cell death plays an active role in the onset of tissue regeneration; however, the mechanisms underlying renal tubular repair after injury have yet to be understood. In the present study, we explored molecules that might serve as “danger” signals in mediating tubular regeneration. Kidneys of rats systemically administered the nephrotoxicant cisplatin (to induce AKI) exhibited massive cell proliferation. The proportion of proliferating cells in the total cell distribution was highest in the outer stripe of the outer medulla coincided with where the tubular damage was the most severe in this study. This finding suggests that soluble factors may have been released from damaged cells to stimulate the proliferation of neighboring tubular epithelial cells. In elucidating the mechanism of dying cell-to-surviving cell communication using normal rat kidney NRK-52E epithelial cells, we found a significant increase in ATP levels in supernatants of these cells after the induction of cell death using ultraviolet irradiation. Furthermore, treatment of conditioned supernatants with apyrase or suramin, which inhibits purinergic signaling, resulted in significant decreases in cell proliferation and migration activities. These results demonstrate a novel role for extracellular nucleotides, probably as danger signals in aggravating tubular regeneration after AKI.
    Type of Medium: Online Resource
    ISSN: 1931-857X , 1522-1466
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2014
    detail.hit.zdb_id: 1477287-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...