GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (3)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2008
    In:  American Journal of Physiology-Regulatory, Integrative and Comparative Physiology Vol. 295, No. 4 ( 2008-10), p. R1131-R1137
    In: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, American Physiological Society, Vol. 295, No. 4 ( 2008-10), p. R1131-R1137
    Abstract: The vagus nerve is an important pathway signaling immune activation of the gastrointestinal tract to the brain. Probiotics are live organisms that may engage signaling pathways of the brain-gut axis to modulate inflammation. The protective effects of Lactobacillus reuteri ( LR) and Bifidobacterium infantis ( BI) during intestinal inflammation were studied after subdiaphragmatic vagotomy in acute dextran sulfate sodium (DSS) colitis in BALB/c mice and chronic colitis induced by transfer of CD4 + CD62L + T lymphocytes from BALB/c into SCID mice. LR and BI (1 × 10 9 ) were given daily. Clinical score, myeloperoxidase (MPO) levels, and in vivo and in vitro secreted inflammatory cytokine levels were found to be more severe in mice that were vagotomized compared with sham-operated animals. LR in the acute DSS model was effective in decreasing the MPO and cytokine levels in the tissue in sham and vagotomized mice. BI had a strong downregulatory effect on secreted in vitro cytokine levels and had a greater anti-inflammatory effect in vagotomized- compared with sham-operated mice. Both LR and BI retained anti-inflammatory effects in vagotomized mice. In SCID mice, vagotomy did not enhance inflammation, but BI was more effective in vagotomized mice than shams. Taken together, the intact vagus has a protective role in acute DSS-induced colitis in mice but not in the chronic T cell transfer model of colitis. Furthermore, LR and BI do not seem to engage their protective effects via this cholinergic anti-inflammatory pathway, but the results interestingly show that, in the T cell, transfer model vagotomy had a biological effect, since it increased the effectiveness of the BI in downregulation of colonic inflammation.
    Type of Medium: Online Resource
    ISSN: 0363-6119 , 1522-1490
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2008
    detail.hit.zdb_id: 603839-6
    detail.hit.zdb_id: 1477297-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2009
    In:  American Journal of Physiology-Regulatory, Integrative and Comparative Physiology Vol. 297, No. 4 ( 2009-10), p. R1118-R1126
    In: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, American Physiological Society, Vol. 297, No. 4 ( 2009-10), p. R1118-R1126
    Abstract: The vagus nerve is a conduit for bidirectional signaling between the brain and the viscera. Vagal signaling has been shown to downregulate gastrointestinal inflammation, and the mechanism is thought to involve acetylcholine binding to the alpha-7 subunit of the nicotinic acetylcholine receptor on macrophages. The aims of this study were to quantify the impact of vagotomy in vivo by visualizing nuclear factor (NF)-κB activity and to determine if the proinflammatory impact of vagotomy could be transferred by lymphocytes. Real-time biophotonic imaging revealed that subdiaphragmatic vagotomy resulted in increased levels of NF-κB in vivo. NF-κB activation was further exaggerated in vivo following exposure to 4% DSS for 5 days. Vagotomized animals also exhibited higher disease activity scores and secreted more proinflammatory cytokines. Adoptive transfer of CD4 + T cells from vagotomized animals (but not CD4 + T cells from sham-operated controls) to naive dextran sulfate sodium (DSS)-treated recipients resulted in increased inflammatory scores. Further examination of the CD4 + T cells revealed that adoptive transfer of the CD25 − population alone from vagotomized donors (but not sham-operated donors) was sufficient to aggravate colitis in DSS-treated recipients. Increased DSS-induced inflammation was associated with reduced CD4 + CD25 + Foxp3 + regulatory T cell numbers in recipients. This study clearly demonstrates the ability of the vagus nerve to modulate activity of the proinflammatory transcription factor NF-κB in vivo. The proinflammatory effect of vagotomy is transferable using splenic T cells and highlights a previously unappreciated cellular mechanism for linking central parasympathetic processes with mucosal inflammation and immune homeostasis.
    Type of Medium: Online Resource
    ISSN: 0363-6119 , 1522-1490
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2009
    detail.hit.zdb_id: 603839-6
    detail.hit.zdb_id: 1477297-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 290, No. 4 ( 2006-04), p. G839-G845
    Abstract: Resident host microflora condition and prime the immune system. However, systemic and mucosal immune responses to bacteria may be divergent. Our aim was to compare, in vitro, cytokine production by human mononuclear and dendritic cells (DCs) from mesenteric lymph nodes (MLNs) and peripheral blood mononuclear cells (PBMCs) to defined microbial stimuli. Mononuclear cells and DCs isolated from the MLN ( n = 10) and peripheral blood ( n = 12) of patients with active colitis were incubated in vitro with the probiotic bacteria Lactobacillus salivarius UCC118 or Bifidobacterium infantis 35624 or the pathogenic organism Salmonella typhimurium UK1. Interleukin (IL)-12, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, and IL-10 cytokine levels were quantified by ELISA. PBMCs and PBMC-derived DCs secreted TNF-α in response to the Lactobacillus, Bifidobacteria, and Salmonella strains, whereas MLN cells and MLN-derived DCs secreted TNF-α only in response to Salmonella challenge. Cells from the systemic compartment secreted IL-12 after coincubation with Salmonella or Lactobacilli, whereas MLN-derived cells produced IL-12 only in response to Salmonella. PBMCs secreted IL-10 in response to the Bifidobacterium strain but not in response to the Lactobacillus or Salmonella strain. However, MLN cells secreted IL-10 in response to Bifidobacteria and Lactobacilli but not in response to Salmonella. In conclusion, commensal bacteria induced regulatory cytokine production by MLN cells, whereas pathogenic bacteria induce T cell helper 1-polarizing cytokines. Commensal-pathogen divergence in cytokine responses is more marked in cells isolated from the mucosal immune system compared with PBMCs.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2006
    detail.hit.zdb_id: 1477329-6
    detail.hit.zdb_id: 603840-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...