GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2020
    In:  American Journal of Physiology-Endocrinology and Metabolism Vol. 318, No. 6 ( 2020-06-01), p. E886-E889
    In: American Journal of Physiology-Endocrinology and Metabolism, American Physiological Society, Vol. 318, No. 6 ( 2020-06-01), p. E886-E889
    Abstract: The measurement of mitochondrial content is essential for bioenergetic research, as it provides a tool to evaluate whether changes in mitochondrial function are strictly due to changes in content or other mechanisms that influence function. In this perspective, we argue that commonly used biomarkers of mitochondrial content may possess limited utility for capturing changes in content with physiological intervention. Moreover, we argue that they may not provide reliable estimates of content in certain pathological situations. Finally, we discuss potential solutions to overcome issues related to the utilization of biomarkers of mitochondrial content. Shedding light on this important issue will hopefully aid conclusions about the mitochondrial structure-function relationship.
    Type of Medium: Online Resource
    ISSN: 0193-1849 , 1522-1555
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2020
    detail.hit.zdb_id: 1477331-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: American Journal of Physiology-Renal Physiology, American Physiological Society, Vol. 309, No. 3 ( 2015-08-01), p. F235-F241
    Abstract: In nephrotic syndrome, aberrant glomerular filtration of plasminogen and conversion to active plasmin in preurine are thought to activate proteolytically epithelial sodium channel (ENaC) and contribute to sodium retention and edema. The ENaC blocker amiloride is an off-target inhibitor of urokinase-type plasminogen activator (uPA) in vitro. It was hypothesized that uPA is abnormally filtered to preurine and is inhibited in urine by amiloride in nephrotic syndrome. This was tested by determination of Na + balance, uPA protein and activity, and amiloride concentration in urine from rats with puromycin aminonucleoside (PAN)-induced nephrotic syndrome. Urine samples from 6 adult and 18 pediatric patients with nephrotic syndrome were analyzed for uPA activity and protein. PAN treatment induced significant proteinuria in rats which coincided with increased urine uPA protein and activity, increased urine protease activity, and total plasminogen/plasmin concentration and Na + retention. Amiloride (2 mg·kg −1 ·24 h −1 ) concentration in urine was in the range 10–20 μmol/l and reduced significantly urine uPA activity, plasminogen activation, protease activity, and sodium retention in PAN rats, while proteinuria was not altered. In paired urine samples, uPA protein was significantly elevated in urine from children with active nephrotic syndrome compared with remission phase. In six adult nephrotic patients, urine uPA protein and activity correlated positively with 24 h urine protein excretion. In conclusion, nephrotic syndrome is associated with aberrant filtration of uPA across the injured glomerular barrier. Amiloride inhibits urine uPA activity which attenuates plasminogen activation and urine protease activity in vivo. Urine uPA is a relevant target for amiloride in vivo.
    Type of Medium: Online Resource
    ISSN: 1931-857X , 1522-1466
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2015
    detail.hit.zdb_id: 1477287-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: American Journal of Physiology-Endocrinology and Metabolism, American Physiological Society, Vol. 305, No. 7 ( 2013-10-01), p. E879-E889
    Abstract: Erythropoietin (Epo) administration improves aerobic exercise capacity and insulin sensitivity in renal patients and also increases resting energy expenditure (REE). Similar effects are observed in response to endurance training. The aim was to compare the effects of endurance training with erythropoiesis-stimulating agent (ESA) treatment in healthy humans. Thirty-six healthy untrained men were randomized to 10 wk of either: 1) placebo ( n = 9), 2) ESA ( n = 9), 3) endurance training ( n = 10), or 4) ESA and endurance training ( n = 8). In a single-blinded design, ESA/placebo was injected one time weekly. Training consisted of biking for 1 h at 65% of wattmax three times per week. Measurements performed before and after the intervention were as follows: body composition, maximal oxygen uptake, insulin sensitivity, REE, and palmitate turnover. Uncoupling protein 2 (UCP2) mRNA levels were assessed in skeletal muscle. Fat mass decreased after training ( P = 0.003), whereas ESA induced a small but significant increase in intrahepatic fat ( P = 0.025). Serum free fatty acid (FFA) levels and palmitate turnover decreased significantly in response to training, whereas the opposite pattern was found after ESA. REE corrected for lean body mass increased in response to ESA and training, and muscle UCP2 mRNA levels increased after ESA ( P = 0.035). Insulin sensitivity increased only after training ( P = 0.011). In conclusion: 1) insulin sensitivity is not improved after ESA treatment despite improved exercise capacity, 2) the calorigenic effects of ESA may be related to increased UCP2 gene expression in skeletal muscle, and 3) training and ESA exert opposite effects on lipolysis under basal conditions, increased FFA levels and liver fat fraction was observed after ESA treatment.
    Type of Medium: Online Resource
    ISSN: 0193-1849 , 1522-1555
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2013
    detail.hit.zdb_id: 1477331-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 288, No. 6 ( 2005-06), p. G1135-G1143
    Abstract: It is well established that subjects with liver cirrhosis are insulin resistant, but the contribution of defects in insulin secretion and/or action to glucose intolerance remains unresolved. Healthy individuals and subjects with liver cirrhosis were studied on two occasions: 1) an oral glucose tolerance test was performed, and 2) insulin secretion was inhibited and glucose was infused in a pattern and amount mimicking the systemic delivery rate of glucose after a carbohydrate meal. Insulin was concurrently infused to mimic a healthy postprandial insulin profile. Postabsorptive glucose concentrations were equal (5.36 ± 0.12 vs. 5.40 ± 0.25 mmol/l, P = 0.89), despite higher insulin ( P 〈 0.01), C-peptide ( P 〈 0.01), and free fatty acid ( P = 0.05) concentrations in cirrhotic than in control subjects. Endogenous glucose release (EGR; 11.50 ± 0.50 vs. 11.73 ± 1.00 μmol·kg −1 ·min −1 , P = 0.84) and the contribution of gluconeogenesis to EGR (6.60 ± 0.47 vs. 6.28 ± 0.64 μmol·kg −1 ·min −1 , P = 0.70) were unaltered by cirrhosis. A minimal model recently developed for the oral glucose tolerance test demonstrated an impaired insulin sensitivity index ( P 〈 0.05), whereas the β-cell response to glucose was unaltered ( P = 0.72). During prandial glucose and insulin infusions, the integrated glycemic response was greater in cirrhotic than in control subjects ( P 〈 0.05). EGR decreased promptly and comparably in both groups, but glucose disappearance was insufficient at the prevailing glucose concentration ( P 〈 0.05). Moreover, identical rates of [3- 3 H]glucose infusion produced higher tracer concentrations in cirrhotic than in control subjects ( P 〈 0.05), implying a defect in glucose uptake. In conclusion, carbohydrate intolerance in liver cirrhosis is determined by insulin resistance and the ability of glucose to stimulate insulin secretion. During prandial glucose and insulin concentrations, EGR suppression was unaltered, but glucose uptake was impaired, which demonstrates that intolerance can be ascribed to a defect in glucose uptake, rather than abnormalities in glucose production or β-cell function. Although insulin secretion ameliorates glucose intolerance, impaired glucose uptake during physiological glucose and insulin concentrations produces marked and sustained hyperglycemia, despite concurrent abnormalities in glucose production or insulin secretion.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2005
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...