GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (2)
Material
Publisher
  • American Physiological Society  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2019
    In:  Journal of Neurophysiology Vol. 121, No. 2 ( 2019-02-01), p. 371-395
    In: Journal of Neurophysiology, American Physiological Society, Vol. 121, No. 2 ( 2019-02-01), p. 371-395
    Abstract: An animal’s directional heading within its environment is encoded by the activity of head direction (HD) cells. In rodents, these neurons are found primarily within the limbic system in the interconnected structures that form the limbic HD circuit. In our accompanying report in this issue, we describe two HD cell populations located outside of this circuit in the medial precentral cortex (PrCM) and dorsal striatum (DS). These extralimbic areas receive their HD signals from the limbic system but do not provide critical input or feedback to limbic HD cells (Mehlman ML, Winter SS, Valerio S, Taube JS. J Neurophysiol 121: 350–370, 2019.). In this report, we complement our previous lesion and recording experiments with a series of neuroanatomical tracing studies in rats designed to examine patterns of connectivity between the PrCM, DS, limbic HD circuit, and related spatial processing circuitry. Retrograde tracing revealed that the DS receives direct input from numerous structures known to contain HD cells and/or other spatially tuned cell types. Importantly, these projections preferentially target and converge within the most medial portion of the DS, the same area in which we previously recorded HD cells. The PrCM receives direct input from a subset of these spatial processing structures. Anterograde tracing identified indirect pathways that could permit the PrCM and DS to convey self-motion information to the limbic HD circuit. These tracing studies reveal the anatomical basis for the functional relationships observed in our lesion and recording experiments. Collectively, these findings expand our understanding of how spatial processing circuitry functionally and anatomically extends beyond the limbic system into the PrCM and DS. NEW & NOTEWORTHY Head direction (HD) cells are located primarily within the limbic system, but small populations of extralimbic HD cells are found in the medial precentral cortex (PrCM) and dorsal striatum (DS). The neuroanatomical tracing experiments reported here explored the pathways capable of transmitting the HD signal to these extralimbic areas. We found that projections arising from numerous spatial processing structures converge within portions of the PrCM and DS that contain HD cells.
    Type of Medium: Online Resource
    ISSN: 0022-3077 , 1522-1598
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2019
    detail.hit.zdb_id: 80161-6
    detail.hit.zdb_id: 1467889-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2019
    In:  Journal of Neurophysiology Vol. 121, No. 2 ( 2019-02-01), p. 350-370
    In: Journal of Neurophysiology, American Physiological Society, Vol. 121, No. 2 ( 2019-02-01), p. 350-370
    Abstract: Head direction (HD) cells fire as a function of the animal’s directional heading and provide the animal with a sense of direction. In rodents, these neurons are located primarily within the limbic system, but small populations of HD cells are found in two extralimbic areas: the medial precentral cortex (PrCM) and dorsal striatum (DS). HD cell activity in these structures could be driven by output from the limbic HD circuit or generated intrinsically. We examined these possibilities by recording the activity of PrCM and DS neurons in control rats and in rats with anterodorsal thalamic nucleus (ADN) lesions, a manipulation that disrupts the limbic HD signal. HD cells in the PrCM and DS of control animals displayed characteristics similar to those of limbic HD cells, and these extralimbic HD signals were eliminated in animals with complete ADN lesions, suggesting that the PrCM and DS HD signals are conveyed from the limbic HD circuit. Angular head velocity cells recorded in the PrCM and DS were unaffected by ADN lesions. Next, we determined if the PrCM and DS convey necessary self-motion signals to the limbic HD circuit. Limbic HD cell activity recorded in the ADN remained intact following combined lesions of the PrCM and DS. Collectively, these experiments reveal a unidirectional functional relationship between the limbic HD circuit and the PrCM and DS; the limbic system generates the HD signal and transmits it to the PrCM and DS, but these extralimbic areas do not provide critical input or feedback to limbic HD cells. NEW & NOTEWORTHY Head direction (HD) cells have been extensively studied within the limbic system. The lesion and recording experiments reported here examined two relatively understudied populations of HD cells located outside of the canonical limbic HD circuit in the medial precentral cortex and dorsal striatum. We found that HD cell activity in these two extralimbic areas is driven by output from the limbic HD circuit, revealing that HD cell circuitry functionally extends beyond the limbic system.
    Type of Medium: Online Resource
    ISSN: 0022-3077 , 1522-1598
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2019
    detail.hit.zdb_id: 80161-6
    detail.hit.zdb_id: 1467889-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...