GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (3)
Material
Publisher
  • American Physiological Society  (3)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2012
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 303, No. 3 ( 2012-08-01), p. G367-G376
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 303, No. 3 ( 2012-08-01), p. G367-G376
    Abstract: Ghrelin is a gastric peptide hormone that controls appetite and energy homeostasis. Plasma ghrelin levels rise before a meal and fall quickly thereafter. Elucidation of the regulation of ghrelin secretion has been hampered by the difficulty of directly interrogating ghrelin cells diffusely scattered within the complex gastric mucosa. Therefore, we generated transgenic mice with ghrelin cell expression of green fluorescent protein (GFP) to enable characterization of ghrelin secretion in a pure population of isolated gastric ghrelin-expressing GFP (Ghr-GFP) cells. Using quantitative RT-PCR and immunofluorescence staining, we detected a high level of expression of the long-chain fatty acid (LCFA) receptor GPR120, while the other LCFA receptor, GPR40, was undetectable. In short-term-cultured pure Ghr-GFP cells, the LCFAs docosadienoic acid, linolenic acid, and palmitoleic acid significantly suppressed ghrelin secretion. The physiological mechanism of LCFA inhibition on ghrelin secretion was studied in mice. Serum ghrelin levels were transiently suppressed after gastric gavage of LCFA-rich lipid in mice with pylorus ligation, indicating that the ghrelin cell may directly sense increased gastric LCFA derived from ingested intraluminal lipids. Meal-induced increase in gastric mucosal LCFA was assessed by measuring the transcripts of markers for tissue uptake of LCFA, lipoprotein lipase (LPL), fatty acid translocase (CD36), glycosylphosphatidylinositol-anchored HDL-binding protein 1, and nuclear fatty acid receptor peroxisome proliferator-activated receptor-γ. Quantitative RT-PCR studies indicate significantly increased mRNA levels of lipoprotein lipase, glycosylphosphatidylinositol-anchored HDL-binding protein 1, and peroxisome proliferator-activated receptor-γ in postprandial gastric mucosa. These results suggest that meal-related increases in gastric mucosal LCFA interact with GPR120 on ghrelin cells to inhibit ghrelin secretion.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2012
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2011
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 300, No. 4 ( 2011-04), p. G538-G546
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 300, No. 4 ( 2011-04), p. G538-G546
    Abstract: The extracellular calcium-sensing receptor (CaSR) has recently been recognized as an l-amino acid sensor and has been implicated in mediating cholecystokinin (CCK) secretion in response to aromatic amino acids. We investigated whether direct detection of l-phenylalanine (l-Phe) by CaSR results in CCK secretion in the native I cell. Fluorescence-activated cell sorting of duodenal I cells from CCK-enhanced green fluorescent protein (eGFP) transgenic mice demonstrated CaSR gene expression. Immunostaining of fixed and fresh duodenal tissue sections confirmed CaSR protein expression. Intracellular calcium fluxes were CaSR dependent, stereoselective for l-Phe over d-Phe, and responsive to type II calcimimetic cinacalcet in CCK-eGFP cells. Additionally, CCK secretion by an isolated I cell population was increased by 30 and 62% in response to l-Phe in the presence of physiological (1.26 mM) and superphysiological (2.5 mM) extracellular calcium concentrations, respectively. While the deletion of CaSR from CCK-eGFP cells did not affect basal CCK secretion, the effect of l-Phe or cinacalcet on intracellular calcium flux was lost. In fact, both secretagogues, as well as superphysiological Ca 2+ , evoked an unexpected 20–30% decrease in CCK secretion compared with basal secretion in CaSR −/− CCK-eGFP cells. CCK secretion in response to KCl or tryptone was unaffected by the absence of CaSR. The present data suggest that CaSR is required for hormone secretion in the specific response to l-Phe by the native I cell, and that a receptor-mediated mechanism may inhibit hormone secretion in the absence of a fully functional CaSR.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2011
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Physiological Society ; 2011
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 300, No. 2 ( 2011-02), p. G345-G356
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 300, No. 2 ( 2011-02), p. G345-G356
    Abstract: The spatial orientation of the enteroendocrine cells along the crypt-villus axis is closely associated with their differentiation in the intestine. Here we studied this relationship using primary duodenal crypts and an ex vivo organoid system established from cholecystokinin-green fluorescent protein (CCK-GFP) transgenic mice. In the primary duodenal crypts, GFP+ cells were found not only in the upper crypt but also at the crypt base, where the stem cells reside. Many GFP+ cells below +4 position were positive for the putative intestinal stem cell markers, leucine-rich repeat-containing G protein-coupled receptor 5, CD133, and doublecortin and CaM kinase-like-1, and also for the neuroendocrine transcription factor neurogenin 3. However, these cells were neither stem nor transient amplifying precursor cells because they were negative for both Ki-67 and phospho-Histone H3 and positive for the mature endocrine marker chromogranin A. Furthermore, these cells expressed multiple endocrine hormones. Tracking of GFP+ cells in the organoids from CCK-GFP mice indicated that GFP+ cells were first observed around the +4 position, some of which localized to the crypt base later in the culture period. These results suggest that a subset of enteroendocrine cells migrates down to the crypt base or stays localized at the crypt base, where they express stem and postmitotic endocrine markers. Further investigation of the function of this subset may provide novel insights into the genesis and development of enteroendocrine cells as well as enteroendocrine tumorigenesis.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2011
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...