GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2023
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 324, No. 6 ( 2023-06-01), p. G422-G425
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 324, No. 6 ( 2023-06-01), p. G422-G425
    Abstract: The connection between byproducts of digestion in the gastrointestinal (GI) tract and neurocognitive disorders is an expanding area of research that has implications for autism spectrum disorder (ASD). Needham et al. (Needham et al. Nature 602: 647–653, 2022) revealed that mice with elevated levels of 4-ethylphenyl sulfate (4EPS), a GI tract-derived metabolite previously found at increased levels in the plasma of individuals with ASD, had altered brain activity, anxiety-influenced behavior, and reduced myelination of neuronal axons. This is a monumental step forward in the study of gut-derived neuroactive compounds, like 4EPS, and advances the understanding of their role in modulating behavior and brain activity in neurocognitive disorders.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2023
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2016
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 310, No. 6 ( 2016-03-15), p. L572-L581
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 310, No. 6 ( 2016-03-15), p. L572-L581
    Abstract: Increasing evidence shows that hyperoxia is a serious complication of oxygen therapy in acutely ill patients that causes excessive production of free radicals leading to hyperoxia-induced acute lung injury (HALI). Our previous studies have shown that P2X7 receptor activation is required for inflammasome activation during HALI. However, the role of P2X7 in HALI is unclear. The main aim of this study was to determine the effect of P2X7 receptor gene deletion on HALI. Wild-type (WT) and P2X7 knockout (P2X7 KO) mice were exposed to 100% O 2 for 72 h. P2X7 KO mice treated with hyperoxia had enhanced survival in 100% O 2 compared with the WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1β, TNF-α, monocyte chemoattractant protein-1, and IL-6 levels were attenuated in P2X7 KO mice. P2X7 deletion decreased lung edema and alveolar protein content, which are associated with enhanced alveolar fluid clearance. In addition, activation of the inflammasome was suppressed in P2X7-deficient alveolar macrophages and was associated with suppression of IL-1β release. Furthermore, P2X7-deficient alveolar macrophage in type II alveolar epithelial cells (AECs) coculture model abolished protein permeability across mouse type II AEC monolayers. Deletion of P2X7 does not lead to a decrease in epithelial sodium channel expression in cocultures of alveolar macrophages and type II AECs. Taken together, these findings show that deletion of P2X7 is a protective factor and therapeutic target for the amelioration of hyperoxia-induced lung injury.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2016
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 314, No. 5 ( 2018-05-01), p. L860-L870
    Abstract: Critically ill patients are commonly treated with high levels of oxygen, hyperoxia, for prolonged periods of time. Unfortunately, extended exposure to hyperoxia can exacerbate respiratory failure and lead to a high mortality rate. Mitochondrial A-kinase anchoring protein (Akap) has been shown to regulate mitochondrial function. It has been reported that, under hypoxic conditions, Akap121 undergoes proteolytic degradation and promotes cardiac injury. However, the role of Akap1 in hyperoxia-induced acute lung injury (ALI) is largely unknown. To address this gap in our understanding of Akap1, we exposed wild-type ( wt) and Akap1 −/− mice to 100% oxygen for 48 h, a time point associated with lung damage in the murine model of ALI. We found that under hyperoxia, Akap1 −/− mice display increased levels of proinflammatory cytokines, immune cell infiltration, and protein leakage in lungs, as well as increased alveolar capillary permeability compared with wt controls. Further analysis revealed that Akap1 deletion enhances lung NF-κB p65 activity as assessed by immunoblotting and DNA-binding assay and mitochondrial autophagy-related markers, PINK1 and Parkin. Ultrastructural analysis using electron microscopy revealed that Akap1 deletion was associated with remarkably aberrant mitochondria and lamellar bodies in type II alveolar epithelial cells. Taken together, these results demonstrate that Akap1 genetic deletion increases the severity of hyperoxia-induced acute lung injury in mice.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2018
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Physiological Society ; 2014
    In:  American Journal of Physiology-Cell Physiology Vol. 306, No. 12 ( 2014-06-15), p. C1101-C1105
    In: American Journal of Physiology-Cell Physiology, American Physiological Society, Vol. 306, No. 12 ( 2014-06-15), p. C1101-C1105
    Abstract: A significant amount of research has been conducted to examine the pathologic processes and epigenetic mechanisms contributing to peripheral hypertension. However, few studies have been carried out to understand the vascular remodeling behind pulmonary hypertension (PH), including peripheral artery muscularization, medial hypertrophy and neointima formation in proximal arteries, and plexiform lesion formation. Similarly, research examining some of the epigenetic principles that may contribute to this vascular remodeling, such as DNA methylation and histone modification, is minimal. The understanding of these principles may be the key to developing new and more effective treatments for PH. The purpose of this review is to summarize epigenetic research conducted in the field of hypertension that could possibly be used to understand the epigenetics of PH. Possible future therapies that could be pursued using information from these studies include selective histone deacetylase inhibitors and targeted DNA methyltransferases. Both of these could potentially be used to silence proproliferative or antiapoptotic genes that lead to decreased smooth muscle cell proliferation. Epigenetics may provide a glimmer of hope for the eventual improved treatment of this highly morbid and debilitating disease.
    Type of Medium: Online Resource
    ISSN: 0363-6143 , 1522-1563
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2014
    detail.hit.zdb_id: 1477334-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Physiological Society ; 2018
    In:  American Journal of Physiology-Cell Physiology Vol. 315, No. 1 ( 2018-07-01), p. C80-C90
    In: American Journal of Physiology-Cell Physiology, American Physiological Society, Vol. 315, No. 1 ( 2018-07-01), p. C80-C90
    Abstract: The constant physiological flux of mitochondrial fission and fusion is inextricably tied to the maintenance of cellular bioenergetics and the fluidity of mitochondrial networks. Yet, the intricacies of this dynamic duo remain unclear in diseases that encompass mitochondrial dysregulation. Particularly, the role of the GTPase fission protein dynamin-related protein 1 (Drp1) is of profound interest. Studies have identified that Drp1 participates in complex signaling pathways, suggesting that the function of mitochondria in pathophysiology may extend far beyond energetics alone. Research indicates that, in stressed conditions, Drp1 translocation to the mitochondria leads to elevated fragmentation and mitophagy; however, despite this, there is limited knowledge about the mechanistic regulation of Drp1 in disease conditions. This review highlights literature about fission, fusion, and, more importantly, discusses Drp1 in cardiac, neural, carcinogenic, renal, and pulmonary diseases. The therapeutic desirability for further research into its contribution to diseases that involve mitochondrial dysregulation is also discussed.
    Type of Medium: Online Resource
    ISSN: 0363-6143 , 1522-1563
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2018
    detail.hit.zdb_id: 1477334-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Physiological Society ; 2021
    In:  American Journal of Physiology-Cell Physiology Vol. 320, No. 3 ( 2021-03-01), p. C279-C281
    In: American Journal of Physiology-Cell Physiology, American Physiological Society, Vol. 320, No. 3 ( 2021-03-01), p. C279-C281
    Abstract: Soluble angiotensin-converting enzyme 2 (sACE2) could be a therapeutic option to treat coronavirus disease 2019 (COVID-19) infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes ACE2 receptors on cell surfaces to gain intracellular entry, making them an ideal target for therapy. High-affinity variants of sACE2, engineered using high-throughput mutagenesis, are capable of neutralizing COVID-19 infection as decoy receptors. These variants compete with native ACE2 present on cells by binding with spike (S) protein of SARS-CoV-2, making native ACE2 on cell surfaces available to convert angiotensin II to angiotensin-1,7, thus alleviating the exaggerated inflammatory response associated with COVID-19 infection. This article explores the use of sACE2 as potential therapy for COVID-19 infection.
    Type of Medium: Online Resource
    ISSN: 0363-6143 , 1522-1563
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2021
    detail.hit.zdb_id: 1477334-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: American Journal of Physiology-Cell Physiology, American Physiological Society, Vol. 316, No. 4 ( 2019-04-01), p. C492-C508
    Abstract: Aging is a key contributor for subclinical progression of late-onset lung diseases. Basal, club, and type II alveolar epithelial cells (AECs) are lung epithelial progenitors whose capacities of differentiation are extensively studied. The timely transition of these cells in response to environmental changes helps maintain the intricate organization of lung structure. However, it remains unclear how aging affects their behavior. This paper demonstrates that the protein expression profiles of a type II AEC marker, prosurfactant protein C (pro-SPC), and a basal cell marker, p63, are altered in the lungs of 14-mo-old versus 7- to 9-wk-old mice. Expression of NH 2 -terminal-truncated forms of p63 (ΔNp63), a basal cell marker, and claudin-10, a club cell marker, in cytoplasmic extracts of lungs of 14-mo-old mice was upregulated. In contrast, nuclear expression of full-length forms of p63 (TAp63) decreases with age. These alterations in protein expression profiles coincide with dramatic changes in lung functions including compliance. Whole tissue lysates of middle-aged versus aged rhesus monkey lungs display similar age-associated alterations in pro-SPC expression. An age-associated decrease of TAp63 in nuclear lysates was observed in aged monkey group. Moreover, the lungs of 14-mo-old versus 7- to 9-wk-old mice display a wider spreading of ΔNp63-positive CCSP-positive bronchiolar epithelial cells. This expansion did not involve upregulation of Ki67, a representative proliferation marker. Collectively, it is postulated that 1) this expansion is secondary to a transition of progenitor cells committed to club cells from ΔNp63-negative to ΔNp63-positive status, and 2) high levels of cytoplasmic ΔNp63 expression trigger club cell migration.
    Type of Medium: Online Resource
    ISSN: 0363-6143 , 1522-1563
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2019
    detail.hit.zdb_id: 1477334-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: American Journal of Physiology-Cell Physiology, American Physiological Society, Vol. 305, No. 2 ( 2013-07-15), p. C182-C189
    Abstract: Inspiration of a high concentration of oxygen, a therapy for acute lung injury (ALI), could unexpectedly lead to reactive oxygen species (ROS) production and hyperoxia-induced acute lung injury (HALI). Nucleotide-binding domain and leucine-rich repeat PYD-containing protein 3 (NLRP3) senses the ROS, triggering inflammasome activation and interleukin-1β (IL-1β) production and secretion. However, the role of NLRP3 inflammasome in HALI is unclear. The main aim of this study is to determine the effect of NLRP3 gene deletion on inflammatory response and lung epithelial cell death. Wild-type (WT) and NLRP3 −/− mice were exposed to 100% O 2 for 48–72 h. Bronchoalveolar lavage fluid and lung tissues were examined for proinflammatory cytokine production and lung inflammation. Hyperoxia-induced lung pathological score was suppressed in NLRP3 −/− mice compared with WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1β, TNFα, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 were attenuated in NLRP3 −/− mice. NLRP3 deletion decreased lung epithelial cell death and caspase-3 levels and a suppressed NF-κB levels compared with WT controls. Taken together, this research demonstrates for the first time that NLRP3-deficient mice have suppressed inflammatory response and blunted lung epithelial cell apoptosis to HALI.
    Type of Medium: Online Resource
    ISSN: 0363-6143 , 1522-1563
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2013
    detail.hit.zdb_id: 1477334-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Physiological Society ; 2014
    In:  American Journal of Physiology-Cell Physiology Vol. 306, No. 11 ( 2014-06-01), p. C999-C1007
    In: American Journal of Physiology-Cell Physiology, American Physiological Society, Vol. 306, No. 11 ( 2014-06-01), p. C999-C1007
    Abstract: Hyperoxic acute lung injury (HALI) is characterized by inflammation and epithelial cell death. CLOCK genes are master regulators of circadian rhythm also implicated in inflammation and lung diseases. However, the relationship of CLOCK genes in hyperoxia-induced lung injury has not been studied. This study will determine if HALI alters CLOCK gene expression. To test this, wild-type and NALP3 −/− mice were exposed to room air or hyperoxia for 24, 48, or 72 h. In addition, mice were exposed to different concentrations of hyperoxia (50, 75, or 100% O 2 ) or room air for 72 h. The mRNA and protein levels of lung CLOCK genes, based on quantitative PCR and Western blot analysis, respectively, and their target genes are significantly elevated in mice exposed to hyperoxia compared with controls. Alterations in CLOCK genes are associated with increased inflammatory markers in bronchoalveolar lavage fluid of hyperoxic mice compared with controls. Histological examination of mice lungs exposed to hyperoxia show increased inflammation and alveolar congestion compared with controls. Our results indicate sequential increase in CLOCK gene expression in lungs of mice exposed to hyperoxia compared with controls. Additionally, data suggest a dose-dependent increase in CLOCK gene expression with increased oxygen concentrations. To validate if the expression changes related to CLOCK genes are indeed associated with inflammation, NALP3 −/− was introduced to analyze loss of function in inflammation. Western blot analysis showed significant CLOCK gene downregulation in NALP3 −/− mice compared with wild-type controls. Together, our results demonstrate that hyperoxia-mediated lung inflammation is associated with alterations in CLOCK gene expression.
    Type of Medium: Online Resource
    ISSN: 0363-6143 , 1522-1563
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2014
    detail.hit.zdb_id: 1477334-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Physiological Society ; 2018
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 315, No. 6 ( 2018-12-01), p. L945-L950
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 315, No. 6 ( 2018-12-01), p. L945-L950
    Abstract: The story of thyroid hormone in human physiology is one of mixed emotions. Studying past literature on its use leads one to believe that it serves only a few functions in a handful of diseases. In reality, the pathophysiological role of thyroid hormone is an uncharted expanse. Over the past few decades, research on thyroid hormone has been understandably monopolized by studies of hypo- and hyperthyroidism and cancers. However, in our focused pursuit, we have neglected to observe its role in systems that are not so easily relatable. Recent evidence in lung disease suggests that the thyroid hormone is capable of preserving mitochondria in an indirect manner. This is an exciting revelation given the profound implications of mitochondrial dysfunction in several lung diseases. When paired with known links between thyroid hormone and fibrotic pathways, thyroid hormone-based therapies become more enticing for research. In this article, we inspect the sudden awareness surrounding thyroid hormone and discuss why it is of paramount importance that further studies scrutinize the potential of thyroid hormone, and/or thyromimetics, as therapies for lung diseases.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2018
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...