GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (3)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2005
    In:  American Journal of Physiology-Endocrinology and Metabolism Vol. 288, No. 5 ( 2005-05), p. E892-E899
    In: American Journal of Physiology-Endocrinology and Metabolism, American Physiological Society, Vol. 288, No. 5 ( 2005-05), p. E892-E899
    Abstract: Narcolepsy is a sleep disorder caused by disruption of hypocretin (orexin) neurotransmission. Injection of hypocretin-1 acutely suppresses TRH and TSH release in rats. In contrast, subchronic administration does not appear to affect the hypothalamo-pituitary-thyroid ensemble in animals. We explored (in 7 patients and 7 controls) whether hypocretin deficiency impacts circulating TSH levels and circadian timing of TSH release in narcoleptic humans. Plasma TSH concentration profiles (blood samples taken at 10-min intervals during 24 h) and TSH levels in response to TRH injection were analyzed by Cluster, robust regression, approximate entropy (ApEn), and deconvolution. Circulating TSH levels were lower in patients, which was primarily attributable to lower pulse amplitude and nadir concentrations. TSH secretion correlated positively with mean 24-h leptin levels ( R 2 = 0.46, P = 0.02) and negatively with amount of sleep ( R 2 = 0.29, P = 0.048). Pattern-synchrony between 24-h leptin and TSH concentrations was demonstrated by significant cross-correlation and cross-ApEn analyses with no differences between controls and patients. Sleep onset was closely associated with a fall in circulating TSH. Features of diurnal rhythmicity of circulating TSH fluctuations were similar in patients and controls, with the acrophase occurring shortly after midnight. Thyroxine and triiodothyronine concentrations were similar in patients and controls and did not display a diurnal rhythm. The response of plasma TSH levels to TRH was also similar in both groups. Sleep patterns in narcoleptics were significantly disorderly compared with controls, as measured by ApEn ( P = 0.006). In summary, circulating TSH concentrations are low in hypocretin-deficient narcoleptic men, which could be attributable to their low plasma leptin levels and/or their abnormal sleep-wake cycle.
    Type of Medium: Online Resource
    ISSN: 0193-1849 , 1522-1555
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2005
    detail.hit.zdb_id: 1477331-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2011
    In:  American Journal of Physiology-Endocrinology and Metabolism Vol. 300, No. 6 ( 2011-06), p. E1069-E1075
    In: American Journal of Physiology-Endocrinology and Metabolism, American Physiological Society, Vol. 300, No. 6 ( 2011-06), p. E1069-E1075
    Abstract: Hypocretin deficiency causes narcolepsy and may affect neuroendocrine systems and body composition. Additionally, growth hormone (GH) alterations my influence weight in narcolepsy. Symptoms can be treated effectively with sodium oxybate (SXB; γ-hydroxybutyrate) in many patients. This study compared growth hormone secretion in patients and matched controls and established the effect of SXB administration on GH and sleep in both groups. Eight male hypocretin-deficient patients with narcolepsy and cataplexy and eight controls matched for sex, age, BMI, waist-to-hip ratio, and fat percentage were enrolled. Blood was sampled before and on the 5th day of SXB administration. SXB was taken two times 3 g/night for 5 consecutive nights. Both groups underwent 24-h blood sampling at 10-min intervals for measurement of GH concentrations. The GH concentration time series were analyzed with AutoDecon and approximate entropy (ApEn). Basal and pulsatile GH secretion, pulse regularity, and frequency, as well as ApEn values, were similar in patients and controls. Administration of SXB caused a significant increase in total 24-h GH secretion rate in narcolepsy patients, but not in controls. After SXB, slow-wave sleep (SWS) and, importantly, the cross-correlation between GH levels and SWS more than doubled in both groups. In conclusion, SXB leads to a consistent increase in nocturnal GH secretion and strengthens the temporal relation between GH secretion and SWS. These data suggest that SXB may alter somatotropic tone in addition to its consolidating effect on nighttime sleep in narcolepsy. This could explain the suggested nonsleep effects of SXB, including body weight reduction.
    Type of Medium: Online Resource
    ISSN: 0193-1849 , 1522-1555
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2011
    detail.hit.zdb_id: 1477331-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Physiological Society ; 2003
    In:  American Journal of Physiology-Endocrinology and Metabolism Vol. 284, No. 3 ( 2003-03-01), p. E641-E647
    In: American Journal of Physiology-Endocrinology and Metabolism, American Physiological Society, Vol. 284, No. 3 ( 2003-03-01), p. E641-E647
    Abstract: Narcolepsy is a sleep disorder caused by impaired hypocretin (orexin) neurotransmission. Growth hormone (GH) secretion may be altered in narcolepsy for various reasons. Slow-wave sleep episodes, which are closely associated with GH-secretory events, are more randomly dispersed over 24 h in narcoleptics. Furthermore, hypocretins may inhibit pituitary GH release. We assessed the function of the somatotropic axis in narcolepsy by deconvolving 24-h (10-min sampling interval) plasma GH concentration profiles in seven hypocretin-deficient narcoleptic patients and in seven healthy controls matched for age, sex, and body weight. Both basal and pulsatile GH secretion rate and secretagogue-induced GH release were similar in patients and controls. However, narcoleptics secreted ∼50% of their total production during the daytime, whereas controls secreted only 25% during the day. Also, the GH output pattern of narcoleptics was significantly less regular. We propose that hypocretin deficiency disrupts the circadian distribution of hypothalamic GH-releasing hormone release in narcoleptic patients to simultaneously cause daytime GH release and promote their propensity to fall asleep during the day.
    Type of Medium: Online Resource
    ISSN: 0193-1849 , 1522-1555
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2003
    detail.hit.zdb_id: 1477331-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...