GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (2)
Material
Publisher
  • American Physiological Society  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2013
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 305, No. 8 ( 2013-10-15), p. L542-L554
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 305, No. 8 ( 2013-10-15), p. L542-L554
    Abstract: Surgical resection of pulmonary tissue exerts a proregenerative stretch stimulus in the remaining lung units. Whether this regeneration process reenacts part or whole of lung morphogenesis developmental program remains unclear. To address this question, we analyzed the stretch-induced regenerating lung transcriptome in mice after left pneumonectomy (PNX) in its developmental context. We created a C57BL/6 mice lung regeneration transcriptome time course at 3, 7, 14, 28, and 56 days post-PNX, profiling the cardiac and medial lobes and whole right lung. Prominent expression at days 3 and 7 of genes related to cell proliferation (Ccnb1, Bub1, and Cdk1), extracellular matrix (Col1a1, Eln, and Tnc), and proteases (Serpinb2 and Mmp9) indicated regenerative processes that tapered off after 56 days. We projected the post-PNX transcriptomic time course into the transcriptomic principal component space of the C57BL/6 mouse developing lungs time series from embryonic day 9.5 to postnatal day 56. All post-PNX samples were localized around the late postnatal stage of developing lungs. Shortly after PNX, the temporal trajectory of regenerating lobes and right lung reversed course relative to the developing lungs in a process reminiscent of dedifferentiation. This reversal was limited to the later postnatal stage of lung development. The post-PNX temporal trajectory then moves forward in lung development time close to its pre-PNX state after days 28 to 56 in a process resembling redevelopment. A plausible interpretation is that remaining pulmonary tissue reverts to a more primitive stage of development with higher potential for growth to generate tissue in proportion to the loss.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2013
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 2012
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 303, No. 10 ( 2012-11-15), p. L899-L911
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 303, No. 10 ( 2012-11-15), p. L899-L911
    Abstract: The “fetal origins hypothesis” argued that physiological changes consequent to in utero exposures ultimately contribute to disease susceptibility in later life. The dramatic increase in asthma prevalence is attributed to early exposures acting on preexisting asthma-susceptible genotypes. We showed previously that distinct transcriptome signatures distinguish the developmental respiratory phenotype of atopic (Brown Norway, BN) and normoresponsive (Lewis) rats. We aimed to determine whether maternal allergen exposure would influence asthma pathogenesis by reprogramming primary patterns of developmental lung gene expression. Postnatal offspring of dams sensitized to ovalbumin before mating and challenged during pregnancy were assessed for lung function, inflammatory biomarkers, and respiratory gene expression. Although maternal ovalbumin exposure resulted in characteristic features of an allergic response (bronchoalveolar lavage neutrophils, IgE, methacholine-induced lung resistance) in offspring of both strains, substantial strain-specific differences were observed in respiratory gene expression. Of 799 probes representing the top 5% of transcriptomic variation, only 112 (14%) were affected in both strains. Strain-specific gene signatures also exhibited marked differences in enrichment for gene ontologies, with immune regulation and cell proliferation being prominent in the BN strain, cell cycle and microtubule assembly gene sets in the Lewis strain. Multiple ovalbumin-specific probes in both strains were also differentially expressed in lymphoblastoid cell lines from human asthmatic vs. nonasthmatic sibling pairs. Our data point to the existence of distinct, genetically programmed responses to maternal exposures in developing lung. These different response patterns, if recapitulated in human fetal development, can contribute to long-term pulmonary health including interindividual susceptibility to asthma.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2012
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...