GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2007
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 293, No. 4 ( 2007-10), p. L1021-L1028
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 293, No. 4 ( 2007-10), p. L1021-L1028
    Abstract: Rhinovirus (RV) infections trigger exacerbations of airways disease, but underlying mechanisms remain unknown. We hypothesized that RV and cytokines present in inflamed airways combine to induce augmented airway epithelial cell chemokine expression, promoting further inflammation. To test this hypothesis in a cellular system, we examined the combined effects of RV39 and TNF-α, a cytokine increased in asthma and chronic obstructive pulmonary disease, on airway epithelial cell proinflammatory gene expression. Costimulation of 16HBE14o- human bronchial epithelial cells and primary mucociliary-differentiated tracheal epithelial cells with RV and TNF-α induced synergistic increases in IL-8 and epithelial neutrophil attractant-78 production. Similar synergism was observed for IL-8 promoter activity, demonstrating that the effect is transcriptionally mediated. Whereas increases in ICAM-1 expression and viral load were noted 16–24 h after costimulation, cooperative effects between RV39 and TNF-α were evident 4 h after stimulation and maintained despite incubation with blocking antibody to ICAM-1 given 2 h postinfection or UV irradiation of virus, implying that effects were not solely due to changes in ICAM-1 expression. Furthermore, RV39 infection induced phosphorylation of ERK and transactivation of the IL-8 promoter AP-1 site, which functions as a basal level enhancer, leading to enhanced TNF-α responses. We conclude that RV infection and TNF-α stimulation induce cooperative increases in epithelial cell chemokine expression, providing a cellular mechanism for RV-induced exacerbations of airways disease.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2007
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 1993
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 265, No. 2 ( 1993-08-01), p. 1-1
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 265, No. 2 ( 1993-08-01), p. 1-1
    Abstract: Pages L263–L269: Hershenson, Marc B., Shahriar Aghili, Naresh Punjabi, Claudia Hernandez, Daniel W. Ray, Allan Garland, Seymour Glagov, and Julian Solway. “Hyperoxia-induced airway hyperresponsiveness and remodeling in immature rats.” Page 264: right-hand column, 2nd paragraph in the results section, the first sentence, with corrected values, should read: There was no difference in baseline R rs between air-exposed and O 2 -exposed rats (control, n = 20, 0.348 ± 0.212 cmH2O·ml -1 ·s; hyperoxia, n = 19, 0.252 ± 0.078 cmH2O·ml -1 ·s; NS). Since all of our other calculations were based on changes in respiratory system resistance relative to baseline, the major findings and conclusions of the article are not altered by this calibration error.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1993
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Physiological Society ; 2001
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 280, No. 5 ( 2001-05-01), p. L955-L964
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 280, No. 5 ( 2001-05-01), p. L955-L964
    Abstract: We have demonstrated that platelet-derived growth factor (PDGF) stimulates p38 mitogen-activated protein (MAP) kinase activation in bovine tracheal myocytes, suggesting that p38 is involved in growth regulation. We therefore examined whether p38 regulates expression of cyclin D1, a G 1 cyclin required for cell cycle traversal. The chemical p38 inhibitors SB-202190 and SB-203580 each increased basal and PDGF-induced cyclin D1 promoter activity and protein abundance. Overexpression of a dominant negative allele of MAP kinase kinase-3 (MKK3), an upstream activator of p38α, had similar effects. Conversely, active MKK3 and MKK6, both of which increase p38α activity, each decreased transcription from the cyclin D1 promoter. Together, these data demonstrate that p38 negatively regulates cyclin D1 expression. We tested whether p38 regulates cyclin D1 expression via inhibition of extracellular signal-regulated kinase (ERK) activation. Chemical inhibitors of p38 induced modest ERK phosphorylation and activation. However, dominant negative MKK3 was insufficient to activate ERK, and active MKK3 and MKK6 did not attenuate platelet-derived growth factor-mediated ERK activation. These data are consistent with the notion that p38α negatively regulates cyclin D1 expression via an ERK-independent pathway.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2001
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Physiological Society ; 2004
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 286, No. 3 ( 2004-03), p. L502-L505
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 286, No. 3 ( 2004-03), p. L502-L505
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2004
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Physiological Society ; 2009
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 296, No. 5 ( 2009-05), p. L849-L856
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 296, No. 5 ( 2009-05), p. L849-L856
    Abstract: IL-8 is a key mediator in the pathophysiology of acute lung injury. TNFα stimulates IL-8 production in respiratory epithelial cells by activating both the NF-κB and MAP kinase pathways. The precise mechanism by which these pathways are downregulated to terminate IL-8 production remains unclear. We studied the regulatory role of the serine/threonine phosphatase, PP2A, on the signaling pathways involved in IL-8 production from respiratory epithelial cells. Inhibition of PP2A using okadaic acid or gene knockdown using siRNA resulted in an augmentation of TNFα-induced IL-8 production. We also found that PP2A inhibition resulted in prolonged activation of JNK, p38, and ERK resulting in both increased transcriptional activation of the IL-8 promoter and posttranscriptional stabilization of IL-8 mRNA. Because TNFα had been shown to activate ceramide accumulation, and separate studies had linked ceramide with activation of PP2A, we hypothesized the pathway of TNFα-inducing ceramide to activate PP2A comprised an endogenous regulatory pathway. Inhibition of the immediate sphingomyelinase-dependent pathway as well as the de novo synthesis pathway of ceramide production reduced serine/threonine phosphatase activity and augmented IL-8 production. These data suggest that ceramide plays a role in activating PP2A to terminate ongoing IL-8 production. In summary, our data suggest that in respiratory epithelium, TNFα induces ceramide accumulation, resulting in subsequent activation of PP2A, which targets those kinases responsible for transcriptional activation of IL-8.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2009
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Physiological Society ; 2011
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 300, No. 5 ( 2011-05), p. L701-L709
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 300, No. 5 ( 2011-05), p. L701-L709
    Abstract: Airway smooth muscle (ASM) hypertrophy is a cardinal feature of severe asthma, but the underlying molecular mechanisms remain uncertain. Forced protein kinase B/Akt 1 activation is known to induce myocyte hypertrophy in other muscle types, and, since a number of mediators present in asthmatic airways can activate Akt signaling, we hypothesized that Akt activation could contribute to ASM hypertrophy in asthma. To test this hypothesis, we evaluated whether Akt activation occurs naturally within airway myocytes in situ, whether Akt1 activation is sufficient to cause hypertrophy of normal airway myocytes, and whether such hypertrophy is accompanied by excessive accumulation of contractile apparatus proteins (contractile phenotype maturation). Immunostains of human airway sections revealed concordant activation of Akt (reflected in Ser 473 phosphorylation) and of its downstream effector p70 S6Kinase (reflected in Thr 389 phosphorylation) within airway muscle bundles, but there was no phosphorylation of the alternative Akt downstream target glycogen synthase kinase (GSK) 3β. Artificial overexpression of constitutively active Akt1 (by plasmid transduction or lentiviral infection) caused a progressive increase in size and protein content of cultured canine tracheal myocytes and increased p70 S6Kinase phosphorylation but not GSK3β phosphorylation; however, constitutively active Akt1 did not cause disproportionate overaccumulation of smooth muscle (sm) α-actin and SM22. Furthermore, mRNAs encoding sm-α-actin and SM22 were reduced. These results indicate that forced Akt1 signaling causes hypertrophy of cultured airway myocytes without inducing further contractile phenotypic maturation, possibly because of opposing effects on contractile protein gene transcription and translation, and suggest that natural activation of Akt1 plays a similar role in asthmatic ASM.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2011
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 303, No. 12 ( 2012-12-15), p. L1046-L1056
    Abstract: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease without effective therapeutics. Periostin has been reported to be elevated in IPF patients relative to controls, but its sources and mechanisms of action remain unclear. We confirm excess periostin in lungs of IPF patients and show that IPF fibroblasts produce periostin. Blood was obtained from 54 IPF patients (all but 1 with 48 wk of follow-up). We show that periostin levels predict clinical progression at 48 wk (hazard ratio = 1.47, 95% confidence interval = 1.03–2.10, P 〈 0.05). Monocytes and fibrocytes are sources of periostin in circulation in IPF patients. Previous studies suggest that periostin may regulate the inflammatory phase of bleomycin-induced lung injury, but periostin effects during the fibroproliferative phase of the disease are unknown. Wild-type and periostin-deficient (periostin −/− ) mice were anesthetized and challenged with bleomycin. Wild-type mice were injected with bleomycin and then treated with OC-20 Ab (which blocks periostin and integrin interactions) or control Ab during the fibroproliferative phase of disease, and fibrosis and survival were assessed. Periostin expression was upregulated quickly after treatment with bleomycin and remained elevated. Periostin −/− mice were protected from bleomycin-induced fibrosis. Instillation of OC-20 during the fibroproliferative phase improved survival and limited collagen deposition. Chimeric mouse studies suggest that hematopoietic and structural sources of periostin contribute to lung fibrogenesis. Periostin was upregulated by transforming growth factor-β in lung mesenchymal cells, and periostin promoted extracellular matrix deposition, mesenchymal cell proliferation, and wound closure. Thus periostin plays a vital role in late stages of pulmonary fibrosis and is a potential biomarker for disease progression and a target for therapeutic intervention.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2012
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Physiological Society ; 2014
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 306, No. 8 ( 2014-04-15), p. L749-L763
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 306, No. 8 ( 2014-04-15), p. L749-L763
    Abstract: Bronchopulmonary dysplasia (BPD), a lung disease of prematurely born infants, is characterized in part by arrested development of pulmonary alveolae. We hypothesized that heme oxygenase (HO-1) and its byproduct carbon monoxide (CO), which are thought to be cytoprotective against redox stress, mitigate lung injury and alveolar simplification in hyperoxia-exposed neonatal mice, a model of BPD. Three-day-old C57BL/6J mice were exposed to air or hyperoxia (Fi O 2 , 75%) in the presence or absence of inhaled CO (250 ppm for 1 h twice daily) for 21 days. Hyperoxic exposure increased mean linear intercept, a measure of alveolar simplification, whereas CO treatment attenuated hypoalveolarization, yielding a normal-appearing lung. Conversely, HO-1-null mice showed exaggerated hyperoxia-induced hypoalveolarization. CO also inhibited hyperoxia-induced pulmonary accumulation of F4/80 + , CD11c + , and CD11b + monocytes and Gr-1 + neutrophils. Furthermore, CO attenuated lung mRNA and protein expression of proinflammatory cytokines, including the monocyte chemoattractant CCL2 in vivo, and decreased hyperoxia-induced type I alveolar epithelial cell CCL2 production in vitro. Hyperoxia-exposed CCL2-null mice, like CO-treated mice, showed attenuated alveolar simplification and lung infiltration of CD11b + monocytes, consistent with the notion that CO blocks lung epithelial cell cytokine production. We conclude that, in hyperoxia-exposed neonatal mice, inhalation of CO suppresses inflammation and alveolar simplification.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2014
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Physiological Society ; 2009
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 296, No. 2 ( 2009-02), p. L176-L184
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 296, No. 2 ( 2009-02), p. L176-L184
    Abstract: Increased airway smooth muscle (ASM) mass, a characteristic finding in asthma, may be caused by hyperplasia or hypertrophy. Cell growth requires increased translation of contractile apparatus mRNA, which is controlled, in part, by glycogen synthase kinase (GSK)-3β, a constitutively active kinase that inhibits eukaryotic initiation factor-2 activity and binding of methionyl tRNA to the ribosome. Phosphorylation of GSK-3β inactivates it, enhancing translation. We sought to quantify the contributions of hyperplasia and hypertrophy to increased ASM mass in ovalbumin (OVA)-sensitized and -challenged BALB/c mice and the role of GSK-3β in this process. Immunofluorescent probes, confocal microscopy, and stereological methods were used to analyze the number and volume of cells expressing α-smooth muscle actin and phospho-Ser 9 GSK-3β (pGSK). OVA treatment caused a 3-fold increase in ASM fractional unit volume or volume density (Vv) (PBS, 0.006 ± 0.0003; OVA, 0.014 ± 0.001), a 1.5-fold increase in ASM number per unit volume (Nv), and a 59% increase in volume per cell (Vv/Nv) (PBS, 824 ± 76 μm 3 ; OVA, 1,310 ± 183 μm 3 ). In OVA-treated mice, there was a 12-fold increase in the Vv of pGSK (+) ASM, a 5-fold increase in the Nv of pGSK (+) ASM, and a 1.6-fold increase in Vv/Nv. Lung homogenates from OVA-treated mice showed increased GSK-3β phosphorylation and lower GSK-3β activity. Both hyperplasia and hypertrophy are responsible for increased ASM mass in OVA-treated mice. Phosphorylation and inactivation of GSK-3β are associated with ASM hypertrophy, suggesting that this kinase may play a role in asthmatic airway remodeling.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2009
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Physiological Society ; 2009
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 297, No. 5 ( 2009-11), p. L931-L944
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 297, No. 5 ( 2009-11), p. L931-L944
    Abstract: Viral infection is associated with approximately one-half of acute exacerbations of chronic obstructive pulmonary disease (COPD), which in turn, accelerate disease progression. In this study, we infected mice exposed to a combination of elastase and LPS, a constituent of cigarette smoke and a risk factor for development of COPD, with rhinovirus serotype 1B, and examined animals for viral persistence, airway resistance, lung volume, and cytokine responses. Mice exposed to elastase and LPS once a week for 4 wk showed features of COPD such as airway inflammation and obstruction, goblet cell metaplasia, reduced lung elastance, increased total lung volume, and increased alveolar chord length. In general, mice exposed to elastase or LPS alone showed intermediate effects. Compared with rhinovirus (RV)-infected PBS-exposed mice, RV-infected elastase/LPS-exposed mice showed persistence of viral RNA, airway hyperresponsiveness, increased lung volume, and sustained increases in expression of TNFα, IL-5, IL-13, and muc5AC (up to 14 days postinfection). Furthermore, virus-induced IFNs, interferon response factor-7, and IL-10 were deficient in elastase/LPS-treated mice. Mice exposed to LPS or elastase alone cleared virus similar to PBS-treated control mice. We conclude that limited exposure of mice to elastase/LPS produces a COPD-like condition including increased persistence of RV, likely due to skewing of the immune response towards a Th2 phenotype. Similar mechanisms may be operative in COPD.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2009
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...