GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (2)
Material
Publisher
  • American Physiological Society  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 1998
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 275, No. 4 ( 1998-10-01), p. H1169-H1177
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 275, No. 4 ( 1998-10-01), p. H1169-H1177
    Abstract: This study examined reflex vascular responses to large rapid increases and decreases in carotid sinus pressure to determine whether delayed or inappropriate vascular responses might be obtained that, if they occurred in people, could lead to hypotension during exposure to rapidly alternating gravitational forces. In chloralose-anesthetized open-chest dogs, a perfusion circuit controlled carotid sinus and thoracic aortic pressures and blood flows to both the vascularly isolated abdominal circulation and a hindlimb (perfusion pressure changes denoted resistance). When carotid pressure was increased and decreased over the range of 60–180 mmHg, the resulting reflex vasodilatation occurred significantly more rapidly than the vasoconstriction ( P 〈 0.001). In the abdominal vascular bed, time constants for vasodilatation and vasoconstriction were 4.2 ± 0.5 and 7.5 ± 1.0 s, respectively. Decreases in carotid pressure in pulses of 10-s duration or less failed to elicit maximal vasoconstriction, whereas increases in carotid pressure lasting as little as 5 s did elicit maximal vasodilatation. “Square-wave” alternations in carotid pressure with periods of 10 s or less (5 s high, 5 s low) resulted in attenuation of the vasoconstriction, and at a 4-s period, both vascular beds remained almost maximally vasodilated throughout. The failure of vascular resistance to follow carotid pressure changes was not due to a failure of the response of sympathetic efferent activity, since the time constants for the reduction and increase in discharge were much shorter at 0.56 ± 0.13 and 0.43 ± 0.10 s, respectively. These results indicate that rapid changes in carotid pressure could result in inappropriate vasodilatation and hypotension and might, in some circumstances, such as in pilots flying high-performance aircraft, predispose to syncope.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1998
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 1996
    In:  American Journal of Physiology-Heart and Circulatory Physiology Vol. 271, No. 3 ( 1996-09-01), p. H1049-H1056
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 271, No. 3 ( 1996-09-01), p. H1049-H1056
    Abstract: This was undertaken to determine whether distension of the subdiaphragmatic veins results in reflex vasoconstriction and interacts with the carotid baroreflex. In alpha-chloralose-anesthetized open-chest dogs, a perfusion circuit controlled carotid and thoracic aortic pressures, splanchnic and limb blood flows, and cardiopulmonary blood flows. At carotid sinus pressures below approximately 90 mmHg, increases in splanchnic pressure of 7 mmHg or more resulted in increases in vascular resistance in both the splanchnic and limb circulations; there was no response at higher carotid pressures. At high venous pressures, the average maximum gains of the carotid baroreflex for splanchnic and limb resistance responses were increased by 106 and 67%, respectively. The responses were not abolished by cutting the vagal or phrenic nerves but were prevented by cutting the splanchnic nerves and, for the limb, the sciatic and femoral nerves. These results suggest that splanchnic congestion, by causing vasoconstriction and augmentation of the carotid baroreflex, may be important in the maintenance of blood pressure during gravitational stress.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1996
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...