GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (3)
  • 1
    In: Journal of Applied Physiology, American Physiological Society, Vol. 102, No. 3 ( 2007-03), p. 896-903
    Abstract: Postural tachycardia syndrome (POTS) is characterized by excessive increases in heart rate (HR) without hypotension during orthostasis. The relationship between the tachycardia and anxiety is uncertain. Therefore, we tested whether the HR response to orthostatic stress in POTS is primarily related to psychological factors. POTS patients ( n = 14) and healthy controls ( n = 10) underwent graded venous pooling with lower body negative pressure (LBNP) to −40 mmHg while wearing deflated antishock trousers. “Sham” venous pooling was performed by 1) trouser inflation to 5 mmHg during LBNP and 2) vacuum pump activation without LBNP. HR responses to mental stress were also measured in both groups, and a questionnaire was used to measure psychological parameters. During LBNP, HR in POTS patients increased 39 ± 5 beats/min vs. 19 ± 3 beats/min in control subjects at −40 mmHg ( P 〈 0.01). LBNP with trouser inflation markedly blunted the HR responses in the patients (9 ± 2 beats/min) and controls (2 ± 1 beats/min), and there was no HR increase during vacuum application without LBNP in either group. HR responses during mental stress were not different in the patients and controls (18 ± 2 vs. 19 ± 1 beats/min; P 〉 0.6). Anxiety, somatic vigilance, and catastrophic cognitions were significantly higher in the patients ( P 〈 0.05), but they were not related to the HR responses during LBNP or mental stress ( P 〉 0.1). These results suggest that the HR response to orthostatic stress in POTS patients is not caused by anxiety but that it is a physiological response that maintains arterial pressure during venous pooling.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2007
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Applied Physiology, American Physiological Society, Vol. 109, No. 3 ( 2010-09), p. 768-777
    Abstract: The vasodilator signals regulating muscle blood flow during exercise are unclear. We tested the hypothesis that in young adults leg muscle vasodilation during steady-state exercise would be reduced independently by sequential pharmacological inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) with N G -nitro-l-arginine methyl ester (l-NAME) and ketorolac, respectively. We tested a second hypothesis that NOS and COX inhibition would increase leg oxygen consumption (V̇o 2 ) based on the reported inhibition of mitochondrial respiration by nitric oxide. In 13 young adults, we measured heart rate (ECG), blood pressure (femoral venous and arterial catheters), blood gases, and venous oxygen saturation (indwelling femoral venous oximeter) during prolonged (25 min) steady-state dynamic knee extension exercise (60 kick/min, 19 W). Leg blood flow (LBF) was determined by Doppler ultrasound of the femoral artery. Whole body V̇o 2 was measured, and leg V̇o 2 was calculated from blood gases and LBF. Resting intra-arterial infusions of acetylcholine (ACh) and nitroprusside (NTP) tested inhibitor efficacy. Leg vascular conductance (LVC) to ACh was reduced up to 53 ± 4% by l-NAME + ketorolac infusion, and the LVC responses to NTP were unaltered. Exercise increased LVC from 4 ± 1 to 33.1 ± 2 ml·min −1 ·mmHg −1 and tended to decrease after l-NAME infusion (31 ± 2 ml·min −1 ·mmHg −1 , P = 0.09). With subsequent administration of ketorolac LVC decreased to 29.6 ± 2 ml·min −1 ·mmHg −1 ( P = 0.02; n = 9). While exercise continued, LVC returned to control values (33 ± 2 ml·min −1 ·mmHg −1 ) within 3 min, suggesting involvement of additional vasodilator mechanisms. In four additional subjects, LVC tended to decrease with l-NAME infusion alone ( P = 0.08) but did not demonstrate the transient recovery. Whole body and leg V̇o 2 increased with exercise but were not altered by l-NAME or l-NAME + ketorolac. These data indicate a modest role for NOS- and COX-mediated vasodilation in the leg of exercising humans during prolonged steady-state exercise, which can be restored acutely. Furthermore, NOS and COX do not appear to influence muscle V̇o 2 in untrained healthy young adults.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2010
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Applied Physiology, American Physiological Society, Vol. 124, No. 2 ( 2018-02-01), p. 276-282
    Abstract: Nitric oxide (NO)-mediated vasodilation contributes to the rapid rise in muscle blood flow at exercise onset. This occurs via increased cyclic guanosine monophosphate (cGMP), which is catabolized by phosphodiesterase-5 (PDE-5). Whether PDE-5 limits exercise vasodilation onset kinetics is unknown. We hypothesized the time course of exercise vasodilation would be 1) accelerated during PDE-5 inhibition (sildenafil citrate, SDF) and 2) decelerated during NO synthase inhibition ( N G -monomethyl-l-arginine, l-NMMA), and 3) the effect of SDF on vasodilation onset kinetics would be attenuated with concurrent l-NMMA. Data from 29 healthy adults were analyzed. Individuals completed 5 min of moderate-intensity forearm exercise under control conditions and during 1) oral SDF ( n = 8), 2) intra-arterial l-NMMA ( n = 15), or 3) combined SDF + l-NMMA ( n = 6). Forearm blood flow (FBF; Doppler ultrasound of the brachial artery) and mean brachial artery blood pressure (MAP) were measured continuously. Forearm vascular conductance (FVC, FBF ÷ MAP) was curve-fit with a monoexponential model, and vasodilation onset kinetics were assessed by mean response time (MRT, time to achieve 63% of steady state). SDF had no effect on MRT ( P = 0.90). NOS inhibition increased MRT ( P = 0.01). MRT during SDF+l-NMMA was not different from control exercise ( P = 0.76). PDE-5 inhibition alone has no effect on rapid-onset vasodilation. Whereas NOS inhibition decelerates vasodilator kinetics, when combined with SDF, vasodilator kinetics do not differ from control. These data suggest NO-independent activation of cGMP occurs at exercise onset; thus PDE-5 inhibition may improve vasodilation in pathologies where NO bioavailability is impaired. NEW & NOTEWORTHY We show that when NO bioavailability is reduced, PDE-5 inhibition can restore vasodilation onset kinetics of exercise-mediated vasodilation via NO-independent cGMP pathways. These data suggest PDE-5 inhibition may improve exercise vasodilation onset kinetics in pathologies where NO bioavailability is impaired.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2018
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...