GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-05-10
    Description: Author(s): Woo Seok Choi, D. W. Jeong, S. S. A. Seo, Y. S. Lee, T. H. Kim, S. Y. Jang, H. N. Lee, and K. Myung-Whun We investigated the magnetic and optical properties of [(LaMnO_{3} )_{n} /(SrTiO_{3} )_{8} ]_{20} (n = 1, 2, and 8) superlattices grown by pulsed-laser deposition. We found that a weak ferromagnetic and semiconducting state developed in all superlattices. An analysis of the optical conductivity show... [Phys. Rev. B 83, 195113] Published Mon May 09, 2011
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-19
    Description: Author(s): Z. Pribulová, J. Kačmarčík, C. Marcenat, P. Szabó, T. Klein, A. Demuer, P. Rodiere, D. J. Jang, H. S. Lee, H. G. Lee, S.-I. Lee, and P. Samuely Specific heat has been measured down to 600 mK and up to 8 T by highly sensitive ac microcalorimetry on MgCNi_{3} single crystals with T_{c} ≈ 7 K. Exponential decay of the electronic specific heat at low temperatures proved that a superconducting energy gap is fully open on the whole Fermi surfac... [Phys. Rev. B 83, 104511] Published Fri Mar 18, 2011
    Keywords: Superfluidity and superconductivity
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-18
    Description: Author(s): S. W. Han, D. C. Ling, H. M. Tsai, C. H. Chuang, S. L. Wu, W. F. Pong, J. W. Chiou, M.-H. Tsai, L. Y. Jang, H. J. Lin, T. W. Pi, and J. F. Lee Local electronic structures of ruthenocuprate RuSr 2 EuCu 2 O 8 (RuEu-1212) were investigated by using x-ray absorption near-edge structure (XANES) and valence-band photoemission (VB-PES) measurements at room temperature, 80 K, and 25 K. The XANES results indicate that when RuEu-1212 is below Curie tempe... [Phys. Rev. B 85, 014506] Published Tue Jan 17, 2012
    Keywords: Superfluidity and superconductivity
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-05-16
    Description: The primary cilium is a microtubule-based nonmotile organelle that extends from the surface of cells, including renal tubular cells. Here, we investigated the alteration of primary cilium length during epithelial cell injury and repair, following ischemia/reperfusion (I/R) insult, and the role of reactive oxygen species in this alteration. Thirty minutes of bilateral renal ischemia induced severe renal tubular cell damage and an increase of plasma creatinine (PCr) concentration. Between 8 and 16 days following the ischemia, the increased PCr returned to normal range, although without complete histological restoration. Compared with the primary cilium length in normal kidney tubule cells, the length was shortened 4 h and 1 day following ischemia, increased over normal 8 days after ischemia, and then returned to near normal 16 days following ischemia. In the urine of I/R-subjected mice, acetylated tubulin was detected. The cilium length of proliferating cells was shorter than that in nonproliferating cells. Mature cells had shorter cilia than differentiating cells. Treatment with Mn(III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP), an antioxidant, during the recovery of damaged kidneys accelerated normalization of cilia length concomitant with a decrease of oxidative stress and morphological recovery in the kidney. In the Madin-Darby canine kidney (MDCK) cells, H 2 O 2 treatment caused released ciliary fragment into medium, and MnTMPyP inhibited the deciliation. The ERK inhibitor U0126 inhibited elongation of cilia in normal and MDCK cells recovering from H 2 O 2 stress. Taken together, our results suggest that primary cilia length reflects cell proliferation and the length of primary cilium is regulated, at least, in part, by reactive oxygen species through ERK.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-05-16
    Description: Obesity is characterized by a chronic proinflammatory state that leads to endothelial dysfunction. Saturated fatty acids (SFA) stimulate Toll-like receptors (TLR) that promote metabolic insulin resistance. However, it is not known whether TLR2 mediates impairment of vascular actions of insulin in response to high-fat diet (HFD) to cause endothelial dysfunction. siRNA knockdown of TLR2 in primary endothelial cells opposed palmitate-stimulated expression of proinflammatory cytokines and splicing of X box protein 1 (XBP-1). Inhibition of unfolding protein response (UPR) reduced SFA-stimulated expression of TNFα. Thus, SFA stimulates UPR and proinflammatory response through activation of TLR2 in endothelial cells. Knockdown of TLR2 also opposed impairment of insulin-stimulated phosphorylation of eNOS and subsequent production of NO. Importantly, insulin-stimulated vasorelaxation of mesenteric arteries from TLR2 knockout mice was preserved even on HFD (in contrast with results from arteries examined in wild-type mice on HFD). We conclude that TLR2 in vascular endothelium mediates HFD-stimulated proinflammatory responses and UPR that accompany impairment of vasodilator actions of insulin, leading to endothelial dysfunction. These results are relevant to understanding the pathophysiology of the cardiovascular complications of diabetes and obesity.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-06-16
    Description: Acute kidney injury (AKI) is an independent risk factor of the development of chronic kidney disease. Kidney fibrosis is a typical feature of chronic kidney disease and is characterized as an expansion of the interstitium due to increases in extracellular matrix molecules and interstitial cells caused by accumulations of extrarenal cells and by the proliferation or differentiation of intrarenal cells. However, the role of bone marrow-derived cells (BMDCs) in AKI-induced kidney fibrosis remains to be defined. Here, we investigated the role of BMDCs in kidney fibrosis after ischemia-reperfusion injury (IRI)-induced AKI in green fluorescent protein (GFP)-expressing bone marrow chimeric mice. IRI resulted in severe fibrotic changes in kidney tissues and dramatically increased interstitial cell numbers. Furthermore, GFP-expressing BMDCs accounted for 〉80% of interstitial cells in fibrotic kidneys. Interstitial GFP-expressing cells expressed α-smooth muscle actin (a myofibroblast marker), fibroblast-specific protein-1 (a fibroblast marker), collagen type III, and F4/80 (a macrophage marker). Over 20% of interstitial cells were bromodeoxyuridine-incorporating (proliferating) cells, and of these, 80% cells were GFP-expressing BMDCs. Daily treatment of IRI mice with apocynin (a NADPH oxidase inhibitor that functions as an antioxidant) from the day after surgery until euthanization slightly inhibited these changes with a small reduction of fibrosis. Taken together, our findings show that BMDCs make a major contribution to IRI-induced fibrosis due to their infiltration, subsequent differentiation, and proliferation in injured kidneys, suggesting that BMDCs be considered an important target for the treatment of kidney fibrosis.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-07-02
    Description: Male gender and the male hormone testosterone increase susceptibility to kidney ischemia and reperfusion (I/R) injury, which is associated with inflammatory responses. Possible involvement of histone deacetylase (HDAC) in inflammatory responses has been suggested. We investigated the gender-specific role of HDACs in plasminogen activator inhibitor type-1 (PAI-1) expression and I/R injury. PAI-1 inhibition protected the kidney from I/R-induced inflammation and functional loss. Among HDACs, only HDAC11 negatively regulated PAI-1 expression in I/R-subjected kidney gender specifically and lipopolysaccharide (LPS)-stimulated mouse monocytes/macrophages. HDAC11 gene silencing increased PAI-1 expression. Chromatin immunoprecipitation assay confirmed binding of HDAC11 to the promoter region of PAI-1 and then release by I/R insult or LPS treatment. I/R-induced HDAC11 release was inhibited by orchiectomy and reversed by dihydrotestosterone treatment. Release of HDAC11 increased acetylation of histone H3. In conclusion, male gender and male hormones accelerate I/R-induced decreases in expression and binding of HDAC11, resulting in an increase in PAI-1 expression. These data provide important insight into gender dimorphism offering HDAC11 as a novel target for I/R injury.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-04
    Description: Preemptive treatment with mesenchymal stem cells (MSCs) can attenuate cisplatin-induced acute kidney injury (AKI). However, it is uncertain whether MSC treatment after the development of renal dysfunction prevents AKI progression or if MSC immunomodulatory properties contribute to MSC therapy. In this study, human umbilical cord blood (hUCB)-derived MSCs were used to compare the effects and mechanisms of early and late MSC therapy in a murine model. After cisplatin injection into C57BL/6 mice, hUCB-MSCs were administered on day 1 (early treatment) or day 3 (late treatment). With early treatment, cisplatin nephrotoxicity was attenuated as evidenced by decreased blood urea nitrogen (BUN) and reduced apoptosis and tubular injury scores on day 3 . Early treatment resulted in downregulation of intrarenal monocyte chemotactic protein-1 and IL-6 expression and upregulation of IL-10 and VEGF expression. Flow cytometric analysis showed similar populations of infiltrated immune cells in both groups; however, regulatory T-cell (Treg) infiltration was 2.5-fold higher in the early treatment group. The role of Tregs was confirmed by the blunted effect of early treatment on renal injury after Treg depletion. In contrast, late treatment (at a time when BUN levels were 2-fold higher than baseline levels) showed no renoprotective effects on day 6 . Neither the populations of intrarenal infiltrating immune cells (including Tregs) nor cytokine expression levels were affected by late treatment. Our results suggest that early MSC treatment attenuates renal injury by Treg induction and immunomodulation, whereas a late treatment (i.e., after the development of renal dysfunction) does not prevent AKI progression or alter the intrarenal inflammatory micromilieu.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-16
    Description: Inflammatory process mediated by innate and adaptive immune systems is a major pathogenic mechanism of renal ischemia-reperfusion injury (IRI). There are concerns that organ recipients may be at increased risk of developing IRI after receiving kidneys from elder donors. To reveal the effects of aging on the development of renal IRI, we compared the immunologic micromilieu of normal and postischemic kidneys from mice of three different ages (9 wk, 6 mo, and 12 mo). There was a higher number of total T cells, especially effector memory CD4/CD8 T cells, and regulatory T cells in the normal kidneys of old mice. On day 2 after IRI, the proportion of necrotic tubules and renal functional changes were comparable between groups although old mice had a higher proportion of damaged tubule compared with young mice. More T cells, but less B cells, trafficked into the postischemic kidneys of old mice. The infiltration of NK T cells was similar across the groups. Macrophages and neutrophils were comparable between groups in both normal kidneys and postischemic kidneys. The intrarenal expressions of TNF-α and VEGF were decreased in normal and postischemic kidneys of aged mice. These mixed effects of aging on lymphocytes and cytokines/chemokines were not different between the two groups of old mice. Our study demonstrates that aging alters the intrarenal micromilieu but has small effects on the development of initial renal injury after IRI. Further study investigating aging-dependent differences in the repair process of renal IRI may be required.
    Print ISSN: 1931-857X
    Electronic ISSN: 1522-1466
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-12-16
    Description: Insulin resistance, a hallmark of metabolic disorders, is a risk factor for diabetes and cardiovascular disease. Impairment of insulin responsiveness in vascular endothelium contributes to insulin resistance. The reciprocal relationship between insulin resistance and endothelial dysfunction augments the pathophysiology of metabolism and cardiovascular functions. The most abundant green tea polyphenol, epigallocatechin-3-gallate (EGCG), has been shown to have vasodilator action in vessels by activation of endothelial nitric oxide synthase (eNOS). However, it is not known whether EGCG has a beneficial effect in high-fat diet (HFD)-induced endothelial dysfunction. Male C57BL/6J mice were fed either a normal chow diet (NCD) or HFD with or without EGCG supplement (50 mg·kg –1 ·day –1 ) for 10 wk. Mice fed a HFD with EGCG supplement gained less body weight and showed improved insulin sensitivity. In vehicle-treated HFD mice, endothelial function was impaired in response to insulin but not to acetylcholine, whereas the EGCG-treated HFD group showed improved insulin-stimulated vasodilation. Interestingly, EGCG intake reduced macrophage infiltration into aortic tissues in HFD mice. Treatment with EGCG restored the insulin-stimulated phosphorylation of eNOS, insulin receptor substrate-1 (IRS-1), and protein kinase B (Akt), which was inhibited by palmitate (200 μM, 5 h) in primary bovine aortic endothelial cells. From these results, we conclude that supplementation of EGCG improves glucose tolerance, insulin sensitivity, and endothelial function. The results suggest that EGCG may have beneficial health effects in glucose metabolism and endothelial function through modulating HFD-induced inflammatory response.
    Print ISSN: 0193-1849
    Electronic ISSN: 1522-1555
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...