GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (5)
Material
Publisher
  • American Meteorological Society  (5)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Applied Meteorology and Climatology Vol. 54, No. 6 ( 2015-06), p. 1248-1266
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 54, No. 6 ( 2015-06), p. 1248-1266
    Abstract: Trends in surface air temperature (SAT) are a critical indicator for climate change at varied spatial scales. Because of urbanization effects, however, the current SAT records of many urban stations can hardly meet the demands of the studies. Evaluation and adjustment of the urbanization effects on the SAT trends are needed, which requires an objective selection of reference (rural) stations. Based on the station history information from all meteorological stations with long-term records in mainland China, an integrated procedure for determining the reference SAT stations has been developed and is applied in forming a network of reference SAT stations. Historical data from the network are used to assess the urbanization effects on the long-term SAT trends of the stations of the national Reference Climate Network and Basic Meteorological Network (RCN+BMN or national stations), which had been used most frequently in studies of regional climate change throughout the country. This paper describes in detail the integrated procedure and the assessment results of urbanization effects on the SAT trends of the national stations applying the data from the reference station network determined using the procedure. The results showed a highly significant urbanization effect of 0.074°C (10 yr) −1 and urbanization contribution of 24.9% for the national stations of mainland China during the time period 1961–2004, which compared well to results that were reported in previous studies by the authors using the predecessor of the present reference network and the reference stations selected but when applying other methods. The authors are thus confident that the SAT data from the updated China reference station network as reported in this paper best represented the baseline SAT trends nationwide and could be used for evaluating and adjusting the urban biases in the historical data series of the SAT from different observational networks.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Bulletin of the American Meteorological Society Vol. 103, No. 11 ( 2022-11), p. E2470-E2483
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 11 ( 2022-11), p. E2470-E2483
    Abstract: Instrumental data from the pre–Industrial Revolution period are important to ­understand climate change. In this paper, the observations made by the French missionary J. Amiot in present-day central Beijing during 1757–62 were processed and analyzed. The observations represent the earliest continuous dataset of meteorological records found in China that have been digitized recently. Comparisons between the Amiot annual temperature range and extreme values with modern observations showed that the observations were read at approximately 0800 and 1500 local solar time (LST) in a well-ventilated outdoor site. The daily maximum, minimum, and mean temperatures (T-max, T-min, and T-mean, respectively) during 1757–62 were determined by examining the relationship between temperature at 0800 and 1500 LST and T-max, T-min, and T-mean in modern reference series. Nearly 260 years ago, Beijing’s climate was typical of an inland temperate monsoon zone with annual T-mean, annual mean T-max, and annual mean T-min being 11.5°, 17.8°, and 6.1°C, respectively; further, the temperatures did not vary considerably from the 1951–1980 temperatures, but differed evidently compared to relatively recent decades (1981–2020). The difference was larger than the magnitudes of global and regional temperature changes. Thus, climate warming since the pre–Industrial Revolution period in the urban areas of Beijing has dominantly occurred over the last four decades. Uncertainties related to the thermometer and observational conditions 260 years ago and the interpolation method used have also been discussed in this paper.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Applied Meteorology and Climatology Vol. 58, No. 10 ( 2019-10), p. 2177-2196
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 58, No. 10 ( 2019-10), p. 2177-2196
    Abstract: Typical rain gauge measurements have long been recognized to underestimate actual precipitation. Long-term daily precipitation records during 1961–2013 from a dense national network of 2379 gauges were corrected to remove systematic errors caused by trace precipitation, wetting losses, and wind-induced undercatch. The corrected percentage was higher in cold seasons and lower in warm seasons. Both trace precipitation and wetting loss corrections were more important in arid regions than in wet regions. A greater correction percentage for wind-induced error could be found in cold and arid regions, as well as high wind speed areas. Generally, the annual precipitation amounts as well as the annual precipitation intensity increased to varying degrees after bias correction with the maximum percentage being about 35%. More importantly, the bias-corrected snowfall amount as well as the rainstorm amount increased remarkably by percentages of more than 50% and 18%, respectively. Remarkably, the total number of actual rainstorm events during the past 53 years could be 90 days more than the observed rainstorm events in some coastal areas of China. Therefore, the actual amounts of precipitation, snowfall, and intense rainfall were much higher than previously measured over China. Bias correction is thus needed to obtain accurate estimates of precipitation amounts and precipitation intensity.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Climate Vol. 32, No. 10 ( 2019-05-15), p. 2691-2705
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 10 ( 2019-05-15), p. 2691-2705
    Abstract: A dataset from 763 national Reference Climate and Basic Meteorological Stations (RCBMS) was used to analyze surface air temperature (SAT) change in mainland China. The monthly historical observational records had been adjusted for urbanization bias existing in the data series of size-varied urban stations, after they were corrected for data inhomogeneities mainly caused by relocation and instrumentation. The standard procedures for creating area-averaged temperature time series and for calculating linear trend were used. Analyses were made for annual and seasonal mean temperature. Annual mean SAT in mainland China as a whole rose by 1.24°C for the last 55 years, with a warming rate of 0.23°C decade −1 . This was close to the warming of 1.09°C observed in global mean land SAT over the period 1951–2010. Compared to the SAT before correction, after-corrected data showed that the urbanization bias had caused an overestimate of the annual warming rate of more than 19.6% during 1961–2015. The winter, autumn, spring, and summer mean warming rates were 0.28°, 0.23°, 0.23°, and 0.15°C decade −1 , respectively. The spatial patterns of the annual and seasonal mean SAT trends also exhibited an obvious difference from those of the previous analyses. The largest contrast was a weak warming area appearing in central parts of mainland China, which included a small part of southwestern North China, the northwestern Yangtze River, and the eastern part of Southwest China. The annual mean warming trends in Northeast and North China obviously decreased compared to the previous analyses, which caused a relatively more significant cooling in Northeast China after 1998 under the background of global warming slowdown.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Climate Vol. 32, No. 24 ( 2019-12-15), p. 8489-8509
    In: Journal of Climate, American Meteorological Society, Vol. 32, No. 24 ( 2019-12-15), p. 8489-8509
    Abstract: This paper presents an analysis of changes in global land extreme temperature indices (1951–2015) based on the new global land surface daily air temperature dataset recently developed by the China Meteorological Administration (CMA). The linear trends of the gridpoint time series and global land mean time series were calculated by using a Mann–Kendall method that accounts for the lag-1 autocorrelation in the time series of annual extreme temperature indices. The results, which are generally consistent with previous studies, showed that the global land average annual and seasonal mean extreme temperature indices series all experienced significant long-term changes associated with warming, with cold threshold indices (frost days, icing days, cold nights, and cold days) decreasing, warm threshold indices (summer days, tropical nights, and warm days) increasing, and all absolute indices (TXx, TXn, TNx, and TNn) also increasing, over the last 65 years. The extreme temperature indices series based on daily minimum temperatures generally had a stronger and more significant trend than those based on daily maximum temperatures. The strongest warming occurred after the mid-1970s, and a few extreme temperature indices showed no significant trend over the period from 1951 to the mid-1970s. Most parts of the global land experienced significant warming trends over the period 1951–2015 as a whole, and the largest trends appeared in mid- to high latitudes of the Eurasian continent.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...