GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (13)
Material
Publisher
  • American Meteorological Society  (13)
Language
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 14 ( 2013-07-15), p. 4947-4961
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 14 ( 2013-07-15), p. 4947-4961
    Abstract: Previous evaluations of model simulations of the cloud and water vapor feedbacks in response to El Niño warming have singled out two common biases in models from phase 3 of the Coupled Model Intercomparison Project (CMIP3): an underestimate of the negative feedback from the shortwave cloud radiative forcing (SWCRF) and an overestimate of the positive feedback from the greenhouse effect of water vapor. Here, the authors check whether these two biases are alleviated in the CMIP5 models. While encouraging improvements are found, particularly in the simulation of the negative SWCRF feedback, the biases in the simulation of these two feedbacks remain prevalent and significant. It is shown that bias in the SWCRF feedback correlates well with biases in the corresponding feedbacks from precipitation, large-scale circulation, and longwave radiative forcing of clouds (LWCRF). By dividing CMIP5 models into two categories—high score models (HSM) and low score models (LSM)—based on their individual skills of simulating the SWCRF feedback, the authors further find that ocean–atmosphere coupling generally lowers the score of the simulated feedbacks of water vapor and clouds but that the LSM is more affected by the coupling than the HSM. They also find that the SWCRF feedback is simulated better in the models that have a more realistic zonal extent of the equatorial cold tongue, suggesting that the continuing existence of an excessive cold tongue is a key factor behind the persistence of the feedback biases in models.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Climate Vol. 27, No. 7 ( 2014-04-01), p. 2545-2561
    In: Journal of Climate, American Meteorological Society, Vol. 27, No. 7 ( 2014-04-01), p. 2545-2561
    Abstract: To better understand the causes of climate change in the tropical Pacific on the decadal and longer time scales, the rectification effect of ENSO events is delineated by contrasting the time-mean state of two forced ocean GCM experiments. In one of them, the long-term mean surface wind stress of 1950–2011 is applied, while in the other, the surface wind stress used is the long-term mean surface wind stress of 1950–2011 plus the interannual monthly anomalies over the period. Thus, the long-term means of the surface wind stress in the two runs are identical. The two experiments also use the same relaxation boundary conditions, that is, the SST is restored to the same prescribed values. The two runs, however, are found to yield significantly different mean climate for the tropical Pacific. The mean state of the run with interannual fluctuations in the surface winds is found to have a cooler warm pool, warmer thermocline water, and warmer eastern surface Pacific than the run without interannual fluctuations in the surface winds. The warming of the eastern Pacific has a pattern that resembles the observed decadal warming. In particular, the pattern features an off-equator maximum as the observed decadal warming. The spatial pattern of the time-mean upper-ocean temperature differences between the two experiments is shown to resemble that of the differences in the nonlinear dynamic heating, underscoring the role of the nonlinear ocean dynamics in the rectification. The study strengthens the suggestion that rectification of ENSO can be a viable mechanism for climate change of decadal and longer time scales.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 13 ( 2015-07-01), p. 5389-5405
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 13 ( 2015-07-01), p. 5389-5405
    Abstract: Decadal climate variability is usually regarded as an internal variability in the climate system. However, using the coupled simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5), it is demonstrated that the external radiative forcing plays an important role in modulating decadal variability of the global mean surface air temperature (SAT). In historical runs, the standard deviations of the global mean SAT exhibit robust increases relative to preindustrial runs, indicating that external forcing acts on decadal variability of the global mean SAT through enhancing amplitude and modulating phase. By comparing model results using different external forcing agents, it is found that the natural forcing agent has the strongest impact on the decadal time scale. Every type of simulation (i.e., the preindustrial, historical, natural forcing, and anthropogenic forcing runs) from almost all the CMIP5 models exhibits a high correlation between the net shortwave (SW) radiative flux at the top of the atmosphere (TOA) and the global mean SAT with a 13-month lag. However, after taking the multimodel ensemble mean for the TOA SW radiative flux and the SAT, respectively, the correlations from the external forcing runs are much higher than those from preindustrial runs. This is because that the decadal SAT anomalies from multiple models cancel each other out in the preindustrial runs without external forcing but generally follow decadal evolution of the external forcing with a 13-month lag. The most significant regional responses to external forcing are found in the tropical Indian and Pacific Oceans, although with different physical mechanisms for the natural and greenhouse gas forcing agents.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Climate, American Meteorological Society, Vol. 36, No. 17 ( 2023-09), p. 5941-5962
    Abstract: The Pacific decadal oscillation (PDO) is the most dominant decadal climate variability over the North Pacific and has substantial global impacts. However, the interannual and decadal PDO prediction skills are not satisfactory, which may result from the failure of appropriately including the North Pacific midlatitude air–sea interaction (ASI) in the initialization for climate predictions. Here, we present a novel initialization method with a climate model to crack this nutshell and achieve successful PDO index predictions up to 10 years in advance. This approach incorporates oceanic observations under the constraint of ASI, thus obtaining atmospheric initial conditions (ICs) consistent with oceanic ICs. During predictions, positive atmospheric feedback to sea surface temperature changes and time-delayed negative ocean circulation feedback to the atmosphere over the North Pacific play essential roles in the high PDO index prediction skills. Our findings highlight a great potential of ASI constraints during initialization for skillful PDO predictions. Significance Statement The Pacific decadal oscillation is a prominent decadal climate variability over the North Pacific. However, accurately predicting the Pacific decadal oscillation remains a challenge. In this study, we use an advanced initialization method where the oceanic observations are incorporated into a climate model constrained by air–sea interactions. We can successfully predict the Pacific decadal oscillation up to 10 years in advance, which is hardly achieved by the state-of-the-art climate prediction systems. Our results suggest that the constraint of air–sea interaction during initialization is important to skillful predictions of the climate variability on decadal time scales.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Climate Vol. 35, No. 5 ( 2022-03-01), p. 1679-1694
    In: Journal of Climate, American Meteorological Society, Vol. 35, No. 5 ( 2022-03-01), p. 1679-1694
    Abstract: The interannual variability of Tibetan Plateau (TP) summer climate has tremendous impacts on both regional hydrological cycles and global climate. In this study, we extract four dominant modes of the summertime large-scale circulation over the TP and surrounding areas from both the observation and simulations by a coupled general circulation model, CAS-FGOALS-f3-L. Based on the 10-member tropical Pacific pacemaker experiments, the ENSO-forced and ENSO-independent signals are isolated, each of which is represented by two dominant modes. The two ENSO-forced modes correspond to ENSO developing and decaying summer, respectively. The positive phase of the developing (decaying) ENSO-related mode is characterized by an anomalous baroclinic cyclone (anticyclone) over the western TP excited by the variations of the tropical summer monsoon rainfall. During the El Niño developing summer, the Indian monsoon rainfall variation is driven by an eastward shift of the Walker circulation due to warm anomalies in the equatorial central-eastern Pacific, whereas during the El Niño decaying summer it is caused by the basinwide warming in the tropical Indian Ocean. The two ENSO-independent modes are associated with the summer North Atlantic Oscillation (SNAO) and the circumglobal teleconnection (CGT) pattern, respectively. The positive phases of the SNAO- and CGT-related modes are characterized by an anomalous anticyclone over the western TP and zonal cyclone–anticyclone dipole pattern over the TP, respectively, both of which are associated with mid- and high-latitude stationary Rossby wave trains.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Hydrometeorology Vol. 23, No. 8 ( 2022-08), p. 1333-1349
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 23, No. 8 ( 2022-08), p. 1333-1349
    Abstract: Global warming and anthropogenic activities have imposed noticeable impacts on rainfall pattern changes at both spatial and temporal scales in recent decades. Systematic diagnosis of rainfall pattern changes is urgently needed at spatiotemporal scales for a deeper understanding of how climate change produces variations in rainfall patterns. The objective of this study was to identify rainfall pattern changes systematically under climate change at a subcontinental scale along a rainfall gradient ranging from 1800 to 200 mm yr −1 by analyzing centennial rainfall data covering 230 sites from 1910 to 2017 in the Northern Territory of Australia. Rainfall pattern changes were characterized by considering aspects of trends and periodicity of annual rainfall, abrupt changes, rainfall distribution, and extreme rainfall events. Our results illustrated that rainfall patterns in northern Australia have changed significantly compared with the early period of the twentieth century. Specifically, 1) a significant increasing trend in annual precipitation associated with greater variation in recent decades was observed over the entire study area, 2) temporal variations represented a mean rainfall periodicity of 27 years over wet to dry regions, 3) an abrupt change of annual rainfall amount occurred consistently in both humid and arid regions during the 1966–75 period, and 4) partitioned long-term time series of rainfall demonstrated a wetter rainfall distribution trend across coastal to inland areas that was associated with more frequent extreme rainfall events in recent decades. The findings of this study could facilitate further studies on the mechanisms of climate change that influence rainfall pattern changes. Significance Statement Characterizing long-term rainfall pattern changes under different rainfall conditions is important to understand the impacts of climate change. We conducted diagnosis of centennial rainfall pattern changes across wet to dry regions in northern Australia and found that rainfall patterns have noticeably changed in recent decades. The entire region has a consistent increasing trend of annual rainfall with higher variation. Meanwhile, the main shifting period of rainfall pattern was during 1966–75. Although annual rainfall seems to become wetter with an increasing trend, more frequent extreme rainfall events should also be noticed for assessing the impacts of climate changes. The findings support further study to understand long-term rainfall pattern changes under climate change.
    Type of Medium: Online Resource
    ISSN: 1525-755X , 1525-7541
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2042176-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 4 ( 2015-02-15), p. 1362-1382
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 4 ( 2015-02-15), p. 1362-1382
    Abstract: The potential role that rectification of ENSO plays as a viable mechanism to generate climate anomalies on the decadal and longer time scales demands a thorough study of this process. In this paper, rectification of ENSO was studied using an ocean GCM that has a realistic seasonal cycle. In addition to conducting a pair of forced ocean GCM experiments with and without ENSO fluctuations, as done in a previous study, a forced experiment was also conducted with the sign of wind anomalies reversed, with the goal of clarifying the role of the asymmetry in the wind forcing and more generally to better understand the nonlinear dynamics responsible for the rectification. It is found that the rectification effect of ENSO is to cool the western Pacific warm pool and warm the eastern equatorial Pacific. Further, it is found that when the sign of the wind stress anomalies is reversed the impact of the rectification on the mean state remains almost unchanged. This lack of change is further explained by noting that the upper-ocean temperature and velocity anomalies (T′, u′, υ′, and w′) are found to respond to the wind stress anomalies linearly, except for the strongest El Niño years. Thus, the correlation between T′ and (u′, υ′, w′) [and thus the nonlinear dynamical heating (NDH)] remains the same when the sign of the wind stress anomalies is reversed. Indeed, the spatial patterns of NDH in all four seasons are found to resemble the rectified effect of ENSO in the mean temperature field in the respective seasons, indicating the critical role of NDH in the rectification.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Bulletin of the American Meteorological Society Vol. 102, No. 6 ( 2020-06), p. E1172-E1191
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 6 ( 2020-06), p. E1172-E1191
    Abstract: As the second-largest shifting sand desert worldwide, the Taklimakan Desert (TD) represents the typical aeolian landforms in arid regions as an important source of global dust aerosols. It directly affects the ecological environment and human health across East Asia. Thus, establishing a comprehensive environment and climate observation network for field research in the TD region is essential to improve our understanding of the desert meteorology and environment, assess its impact, mitigate potential environmental issues, and promote sustainable development. With a nearly 20-yr effort under the extremely harsh conditions of the TD, the Desert Environment and Climate Observation Network (DECON) has been established completely covering the TD region. The core of DECON is the Tazhong station in the hinterland of the TD. Moreover, the network also includes 4 satellite stations located along the edge of the TD for synergistic observations, and 18 automatic weather stations interspersed between them. Thus, DECON marks a new chapter of environmental and meteorological observation capabilities over the TD, including dust storms, dust emission and transport mechanisms, desert land–atmosphere interactions, desert boundary layer structure, ground calibration for remote sensing monitoring, and desert carbon sinks. In addition, DECON promotes cooperation and communication within the research community in the field of desert environments and climate, which promotes a better understanding of the status and role of desert ecosystems. Finally, DECON is expected to provide the basic support necessary for coordinated environmental and meteorological monitoring and mitigation, joint construction of ecologically friendly communities, and sustainable development of central Asia.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Climate, American Meteorological Society, Vol. 24, No. 14 ( 2011-07-15), p. 3593-3608
    Abstract: Controlled numerical experiments using ocean-only and ocean–atmosphere coupled general circulation models show that interannual sea level depression in the eastern Indian Ocean during the Indian Ocean dipole (IOD) events forces enhanced Indonesian Throughflow (ITF) to transport warm water from the upper-equatorial Pacific Ocean to the Indian Ocean. The enhanced transport produces elevation of the thermocline and cold subsurface temperature anomalies in the western equatorial Pacific Ocean, which propagate to the eastern equatorial Pacific to induce significant coupled evolution of the tropical Pacific oceanic and atmospheric circulation. Analyses suggest that the IOD-forced ITF transport anomalies are about the same amplitudes as those induced by the Pacific ENSO. Results of the coupled model experiments suggest that the anomalies induced by the IOD persist in the equatorial Pacific until the year following the IOD event, suggesting the importance of the oceanic channel in modulating the interannual climate variations of the tropical Pacific Ocean at the time lag beyond one year.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2011
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 8 ( 2015-04-15), p. 3250-3274
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 8 ( 2015-04-15), p. 3250-3274
    Abstract: The mechanisms for El Niño–Southern Oscillation (ENSO) amplitude change under global warming are investigated through quantitative assessment of air–sea feedback processes in present-day and future climate simulations of four models participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5). Two models (MPI-ESM-MR and MRI-CGCM3) project strengthened ENSO amplitude, whereas the other two models (CCSM4 and FGOALS-g2) project weakened ENSO amplitude. A mixed layer heat budget diagnosis shows that the major cause of the projected ENSO amplitude difference between the two groups is attributed to the changes of the thermocline and zonal advective feedbacks. A weaker (stronger) equatorial thermocline response to a unit anomalous zonal wind stress forcing in the Niño-4 region is found in CCSM4 and FGOALS-g2 (MPI-ESM-MR and MRI-CGCM3). The cause of the different response arises from the change in the meridional scale of ENSO. A narrower (wider) meridional width of sea surface temperature (SST) and zonal wind stress anomalies causes a strengthening (weakening) of the equatorial thermocline response and thus stronger Bjerknes and zonal advective feedbacks, as the subsurface temperature and zonal current anomalies depend on the thermocline response; consequently, the ENSO amplitude increases (decreases). The change of ENSO meridional width is caused by the change in mean meridional overturning circulation in the equatorial Pacific Ocean, which depends on change of mean wind stress and SST warming patterns under global warming.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...