GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (62)
Material
Publisher
  • American Meteorological Society  (62)
Language
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Bulletin of the American Meteorological Society Vol. 98, No. 5 ( 2017-05), p. 999-1013
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 98, No. 5 ( 2017-05), p. 999-1013
    Abstract: During the presummer rainy season (April–June), southern China often experiences frequent occurrences of extreme rainfall, leading to severe flooding and inundations. To expedite the efforts in improving the quantitative precipitation forecast (QPF) of the presummer rainy season rainfall, the China Meteorological Administration (CMA) initiated a nationally coordinated research project, namely, the Southern China Monsoon Rainfall Experiment (SCMREX) that was endorsed by the World Meteorological Organization (WMO) as a research and development project (RDP) of the World Weather Research Programme (WWRP). The SCMREX RDP (2013–18) consists of four major components: field campaign, database management, studies on physical mechanisms of heavy rainfall events, and convection-permitting numerical experiments including impact of data assimilation, evaluation/improvement of model physics, and ensemble prediction. The pilot field campaigns were carried out from early May to mid-June of 2013–15. This paper: i) describes the scientific objectives, pilot field campaigns, and data sharing of SCMREX; ii) provides an overview of heavy rainfall events during the SCMREX-2014 intensive observing period; and iii) presents examples of preliminary research results and explains future research opportunities.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Hydrometeorology Vol. 24, No. 7 ( 2023-07), p. 1209-1223
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 24, No. 7 ( 2023-07), p. 1209-1223
    Abstract: Hydrological models play an important role in water resources management and extreme events forecasting, and they are sensitive to the underlying conditions. This study aims to evaluate the impact of different soil-type maps and land-use maps on hydrological simulations and watershed responses by applying the WRF-Hydro (Weather Research and Forecasting Model Hydrological modeling system) distributed hydrological model to the Xijiang River basin. WRF-Hydro runs for four different scenarios for the period 1992–2013. FAO (Food and Agriculture Organization) and GSDE (Global Soil Dataset for Earth System Science) soil-type maps, and MODIS (Moderate-Resolution Imaging Spectroradiometer) and CNLUCC (China Land Use Land Cover Remote Sensing Monitoring Dataset) land-use maps are used in this study. These soil-type maps and land-use maps are freely combined to form four scenarios. It is found that soil moisture and surface runoff are sensitive to soil-type maps, and absorbed shortwave radiation is found to be the least sensitive to soil-type maps. Absorbed shortwave radiation and heat flux are sensitive to land-use maps. The model performance of simulating soil moisture has increased when the soil-type map changes from FAO to GSDE and the land-use map changes from MODIS to CNLUCC for most stations. When the soil-type map changes from FAO to GSDE and the land-use map changes from MODIS to CNLUCC, the biases of simulating streamflow decrease. This study shows that the performance of the offline WRF-Hydro is significantly influenced by soil-type and land-use maps, and better simulation results can be obtained with more realistic underlying surface maps. Significance Statement The purpose of this study is to evaluate the impacts of land-use and soil-type maps on hydrological processes at the watershed scale by applying a distributed hydrological model WRF-Hydro model for the Xijiang River basin and reveal the importance of choosing land-use and soil-type maps. In this study, two soil-type maps and two land-use maps are used. It is found that soil moisture and surface runoff are sensitive to soil-type maps, and absorbed shortwave radiation and heat flux are sensitive to land-use maps. When using GSDE soil-type and CNLUCC land-use maps, the performance of the model is improved. The underlying conditions should be considered when applying the models in practice.
    Type of Medium: Online Resource
    ISSN: 1525-755X , 1525-7541
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2042176-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Climate Vol. 34, No. 2 ( 2021-01), p. 545-566
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 2 ( 2021-01), p. 545-566
    Abstract: This study investigated the characteristics of both the regular and irregular seasonal northward march of the East Asian summer wet environment (SNM_EASWE) over the continent during June–July over the past six decades and in the future. During 1961–2015 and in the future, the regular SNM_EASWE is defined mainly by an intensified climatic northward-moving rainband over eastern China, whereas the irregular SNM_EASWE is defined mainly by less clear features of northward-moving rainband. Further analyses indicate that the boreal summer intraseasonal oscillation (BSISO) played a dominant role in affecting the regular/irregular SNM_EASWE during 1961–79, whereas both the BSISO and the seasonally varying western North Pacific (WNP) eddy may exert notable influences on the regular/irregular SNM_EASWE during 1980–2015 and in the future, where the WNP eddy refers to the anomalous anticyclone/cyclone over the WNP associated with the anomalous western Pacific subtropical high. During 1980–2015, a La Niña–like (El Niño–like) condition in the tropical Pacific during June–July may induce a regular (irregular) SNM_EASWE case because of the influence of anomalous convection over the Maritime Continent on the seasonally varying WNP eddy; an anomalous warming (cooling) in the tropical Indian Ocean during June–July may also partly induce a regular (irregular) SNM_EASWE case via influencing the seasonally varying WNP eddy. The increased influence of the seasonally varying WNP eddy on the regular/irregular SNM_EASWE after 1979 is attributed to the increased interannual variability of convective activity over the Maritime Continent and of sea surface temperatures in the Arabian Sea after 1979.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Climate Vol. 31, No. 21 ( 2018-11), p. 8985-9000
    In: Journal of Climate, American Meteorological Society, Vol. 31, No. 21 ( 2018-11), p. 8985-9000
    Abstract: Observations show that the East Asian winter monsoon (EAWM) experienced an interdecadal weakening in the mid-1980s. This is evident for all members of the EAWM system (i.e., East Asian trough, upper-tropospheric jet stream, and lower-tropospheric monsoon circulation). Here, we investigate the relative contributions of natural (volcanic aerosols and solar variability) and anthropogenic [greenhouse gases (GHGs) and anthropogenic aerosols] forcings to this interdecadal weakening using multiple coupled models within phase 5 of the Coupled Model Intercomparison Project (CMIP5). The results indicate that in the midtroposphere, the increased GHG concentrations play an important role in weakening the East Asian trough (EAT) by increasing the sea surface temperatures (SSTs) over the North Pacific. In the upper troposphere, natural external forcings contribute to the observed weakening of the meridional shear of the East Asian jet stream (EAJS) by regulating the meridional temperature gradient (MTG) over the East Asian region. In the lower troposphere, both anthropogenic and natural forcings can weaken the Siberian high during this period. Overall, based on the present analysis of the CMIP5 output, GHGs and natural forcings play key roles in shaping the observed interdecadal weakening of the EAWM during the mid-1980s. Additionally, contributions from internal variability cannot be neglected and require further investigation.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Climate Vol. 29, No. 13 ( 2016-07-01), p. 5041-5057
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 13 ( 2016-07-01), p. 5041-5057
    Abstract: In this study, a 600-yr integration performed with the Bergen Climate Model (BCM), version 2.0, was used to investigate the impact of strong tropical volcanic eruptions (SVEs) on the East Asian winter monsoon (EAWM). It is found that SVEs have an important influence on the East Asian winter climate. The volcanic forcing can cause changes in surface heat fluxes and tropospheric circulation, particularly over the tropics and high-latitude regions. As a result, Arctic Oscillation enters into its positive phase in the first two winters after SVEs. The associated circulation weakens the Siberian high and reduces the cold air transport to East Asia, which is not conducive to the enhancement of the EAWM during this period. At the same time, the North Pacific Ocean gradually cools and shapes La Niña–like sea surface temperature (SST) anomalies in the third winter after SVEs. The Walker circulation is strengthened over the Pacific, and two anomalous lower-tropospheric cyclones are located over the South China Sea and southeast of Japan, respectively. Therefore, related northeasterly wind anomalies appear along the East Asian coast, indicating a strengthened EAWM during this period. Meanwhile, the enhanced Siberian high and East Asian trough further contribute to the enhancement of EAWM in the third winter. It is therefore concluded that the SVEs-induced climate changes over the tropical Pacific and north polar regions play an important role in regulating the EAWM in the posteruption winters.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 2 ( 2020-01-15), p. 559-575
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 2 ( 2020-01-15), p. 559-575
    Abstract: In this study, focusing on the interdecadal time scale, we investigate the internal variability of the East Asian winter monsoon (EAWM) using output from 19 coupled models’ long-term preindustrial control (piControl) simulations within phase 5 of the Coupled Model Intercomparison Program (CMIP5). In total, we identify 53 cases of significant interdecadal weakening of the EAWM from these 19 piControl simulations. In most weakening cases, both the Siberian high and the East Asian trough are significantly weakened. The East Asian jet stream in the upper troposphere shifts poleward. Southerly wind anomalies are evident over East Asia in the lower troposphere. At the same time, both the Arctic Oscillation (AO) and the North Pacific Oscillation are in their positive phases. Associated anomalous anticyclonic circulation can be found over the North Pacific. Additionally, the North Pacific shows negative Pacific decadal oscillation (PDO)-like sea surface temperature (SST) anomalies. In contrast, we also analyzed 49 cases of significant strengthening of the EAWM, and the atmospheric and oceanic anomalies show opposite signals with the weakening cases. This suggests that internal variabilities of the climate system can also cause interdecadal variations of the EAWM. In addition, the phase shifting of the AO is likely the main reason for the EAWM’s interdecadal variations in the unforced long-term simulations. Further numerical experiments using the Community Atmosphere Model, version 4 (CAM4), deny the causal relationship between the interdecadal variations of EAWM and PDO-like SST anomalies. This study also implies that the internal variabilities of the climate system could contribute to the observed interdecadal weakening of the EAWM around the mid-1980s.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Climate Vol. 34, No. 7 ( 2021-04), p. 2777-2790
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 7 ( 2021-04), p. 2777-2790
    Abstract: This study investigates the first two leading modes of the interannual variability of frequency of snowfall events (FSE) over China in the winter during 1986–2018. The positive phase of the first leading mode (EOF1) is mainly characterized by positive FSE anomalies in northeastern–northwestern China and negative FSE anomalies in the three-river-source region. In contrast, the positive phase of the second leading mode (EOF2) is mainly characterized by positive FSE anomalies in central-eastern China (CEC). EOF1 is affected by the synoptic-scale wave activity over the midlatitudes of the East Asian continent, where active synoptic-scale wave activity over the midlatitudes may cause increased FSE over northeastern–northwestern China, and vice versa. In a winter of a negative phase of the North Atlantic Oscillation, an anomalous deep cold low may occur over Siberia, which may induce increased meridional air temperature gradient, increased atmospheric baroclinicity, and hence increased FSE over the midlatitudes of the East Asian continent. The EOF2 is affected by the interaction between anomalous northerly cold advection and anomalous southerly water vapor transport over CEC. The positive phase of EOF2 is associated with negative sea ice anomalies in the Barents Sea–Kara Sea region and negative sea surface temperature anomalies in the central-eastern tropical Pacific. Reduced sea ice in the Barents Sea–Kara Sea during January–February may cause increased northerly cold advection over CEC, while a La Niña–like condition during January may induce southerly water vapor transport anomalies over CEC.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 10 ( 2020-05-15), p. 4315-4332
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 10 ( 2020-05-15), p. 4315-4332
    Abstract: Based on the long-term reanalysis datasets and the multivariate copula method, this study reveals that the frequency of summer hot drought events (SHDEs) over northeastern China (NEC) shows interdecadal variations during 1925–2010. It is revealed that the summer sea surface temperature (SST) over the North Atlantic has a significant positive correlation with the frequency of SHDEs over NEC on the decadal time scale, indicating a potential influence of the Atlantic multidecadal oscillation (AMO). Further analyses indicate that during the positive phases of the AMO, the warming SST over the North Atlantic can trigger a stationary Rossby wave originating from the North Atlantic, which splits into two wave trains propagating along two different routes. One is a zonally orientated wave train that resembles the Silk Road pattern, whereas the other is an arching wave train that resembles the polar–Eurasian pattern. A negative (positive) phase of the Silk Road pattern (polar–Eurasian pattern) may result in the weakened westerly wind along the jet stream, the downward vertical motion, and the anomalous positive geopotential center over NEC, providing favorable conditions for precipitation deficiency and high temperature and resulting in increased SHDEs. Thus, the Silk Road pattern and the polar–Eurasian pattern serve as linkages between the AMO and SHDEs over northeastern China in summer on the interdecadal time scale. Model simulations from CAM4 perturbed with warmer SST in the North Atlantic show precipitation deficiency and high temperature conditions over northeastern China in summer, supporting the potential impacts of the North Atlantic SST on SHDEs over northeastern China. The results suggest that the phase of the AMO should be taken into account in the decadal prediction of SHDEs over northeastern China in summer.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 22 ( 2020-11-15), p. 9691-9703
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 22 ( 2020-11-15), p. 9691-9703
    Abstract: Dust is the major aerosol type over the Tibetan Plateau (TP), and the TP plays an important role in forming the spring dust belt across the Northern Hemisphere in the upper troposphere. Estimated spring dust mass flux (DMF) showed a significant declining trend over the TP during 2007–19. The total spring DMF across the TP (TDMFTP) was mainly affected by DMFs over the Tarim Basin, while the spring DMF across the TP in the midtroposphere was also connected with DMFs over the northwest Indian Peninsula and central Asia. Interannual variability of spring TDMFTP was strongly correlated with the North Atlantic winter sea surface temperature (SST) tripole. A cold preceding winter induced by the North Atlantic winter SST tripole over midlatitude Eurasia promotes dust activities in the subsequent spring. The North Atlantic winter SST tripole anomalies persist into the subsequent spring and induce a corresponding atmosphere response. Enhanced atmospheric baroclinicity develops over northwest China and the northern Indian Peninsula during spring, which is attributed to surface thermal forcing induced by the positive winter SST tripole phase. A strong positive North Atlantic winter SST tripole anomaly strengthens the upper-level westerly jets, enhancing airflow toward the TP midtroposphere; together, these circulation patterns cause anomalous cyclonic conditions in the lower troposphere, especially over the Tarim Basin, via the eastward propagation of a Rossby wave train. These atmospheric circulation conditions are likely to increase the frequency of dust occurrence and promote the transport of dust onto the TP.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Journal of Climate Vol. 34, No. 11 ( 2021-06), p. 4227-4242
    In: Journal of Climate, American Meteorological Society, Vol. 34, No. 11 ( 2021-06), p. 4227-4242
    Abstract: The Tibetan Plateau (TP), referred to as the “Asian water tower,” contains one of the largest land ice masses on Earth. The local glacier shrinkage and frozen-water storage are strongly affected by variations in surface air temperature over the TP (TPSAT), especially in springtime. This study reveals that the relationship between the February North Atlantic Oscillation (NAO) and March TPSAT is unstable with time and regulated by the phase of the Atlantic multidecadal variability (AMV). The significant out-of-phase connection occurs only during the warm phase of AMV (AMV+). The results show that during the AMV+, the negative phase of the NAO persists from February to March, and is accompanied by a quasi-stationary Rossby wave train trapped along a northward-shifted subtropical westerly jet stream across Eurasia, inducing an anomalous adiabatic descent that warms the TP. However, during the cold phase of the AMV, the negative NAO cannot persist into March. The Rossby wave train propagates along the well-separated polar and subtropical westerly jets, and the NAO–TPSAT connection is broken. Further investigation suggests that the enhanced synoptic eddy and low-frequency flow (SELF) interaction over the North Atlantic in February and March during the AMV+, caused by the southward-shifted storm track, helps maintain the NAO pattern via positive eddy feedback. This study provides a new detailed perspective on the decadal variability of the North Atlantic–TP connection in late winter to early spring.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...