GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (4)
  • 1
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 21 ( 2017-11), p. 8565-8593
    Abstract: Twentieth-century regional sea level changes are estimated from 12 climate models from phase 5 of the Climate Model Intercomparison Project (CMIP5). The output of the CMIP5 climate model simulations was used to calculate the global and regional sea level changes associated with dynamic sea level, atmospheric loading, glacier mass changes, and ice sheet surface mass balance contributions. The contribution from groundwater depletion, reservoir storage, and dynamic ice sheet mass changes are estimated from observations as they are not simulated by climate models. All contributions are summed, including the glacial isostatic adjustment (GIA) contribution, and compared to observational estimates from 27 tide gauge records over the twentieth century (1900–2015). A general agreement is found between the simulated sea level and tide gauge records in terms of interannual to multidecadal variability over 1900–2015. But climate models tend to systematically underestimate the observed sea level trends, particularly in the first half of the twentieth century. The corrections based on attributable biases between observations and models that have been identified in Part I of this two-part paper result in an improved explanation of the spatial variability in observed sea level trends by climate models. Climate models show that the spatial variability in sea level trends observed by tide gauge records is dominated by the GIA contribution and the steric contribution over 1900–2015. Climate models also show that it is important to include all contributions to sea level changes as they cause significant local deviations; note, for example, the groundwater depletion around India, which is responsible for the low twentieth-century sea level rise in the region.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 23 ( 2017-12), p. 9383-9398
    Abstract: The northern North Atlantic comprises a dynamically complex area with distinct topographic features, making it challenging to model oceanic features with global climate models. As climate models form the basis for assessment reports of future regional sea level rise, model evaluation is important. In this study, the representation of regional sea level in this area is evaluated in 18 climate models that contributed to phase 5 of the Coupled Model Intercomparison Project. Modeled regional dynamic height is compared to observations from an altimetry-based record over the period 1993–2012 in terms of mean dynamic topography, interannual variability, and linear trend patterns. As models are expected to reproduce the location and magnitude but not the timing of internal variability, the observations are compared to the full 150-yr historical simulations using 20-yr time slices. This approach allows one to examine modeled natural variability versus observed changes and to assess whether a forced signal is detectable over the 20-yr record or whether the observed changes can be explained by internal variability. The models perform well with respect to mean dynamic topography. However, model performances degrade when interannual variability and linear trend patterns are considered. The modeled regionwide average steric and dynamic sea level rise is larger than estimated from observations, and the marked observed increase in the subpolar gyre is not consistent with a forced response but rather a result of internal variability. Using a simple weighting scheme, it is shown that the results can be used to reduce uncertainties in sea level projections.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 13 ( 2013-07-01), p. 4476-4499
    Abstract: Confidence in projections of global-mean sea level rise (GMSLR) depends on an ability to account for GMSLR during the twentieth century. There are contributions from ocean thermal expansion, mass loss from glaciers and ice sheets, groundwater extraction, and reservoir impoundment. Progress has been made toward solving the “enigma” of twentieth-century GMSLR, which is that the observed GMSLR has previously been found to exceed the sum of estimated contributions, especially for the earlier decades. The authors propose the following: thermal expansion simulated by climate models may previously have been underestimated because of their not including volcanic forcing in their control state; the rate of glacier mass loss was larger than previously estimated and was not smaller in the first half than in the second half of the century; the Greenland ice sheet could have made a positive contribution throughout the century; and groundwater depletion and reservoir impoundment, which are of opposite sign, may have been approximately equal in magnitude. It is possible to reconstruct the time series of GMSLR from the quantified contributions, apart from a constant residual term, which is small enough to be explained as a long-term contribution from the Antarctic ice sheet. The reconstructions account for the observation that the rate of GMSLR was not much larger during the last 50 years than during the twentieth century as a whole, despite the increasing anthropogenic forcing. Semiempirical methods for projecting GMSLR depend on the existence of a relationship between global climate change and the rate of GMSLR, but the implication of the authors' closure of the budget is that such a relationship is weak or absent during the twentieth century.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 21 ( 2017-11), p. 8539-8563
    Abstract: Sea level change is one of the major consequences of climate change and is projected to affect coastal communities around the world. Here, global mean sea level (GMSL) change estimated by 12 climate models from phase 5 of the World Climate Research Programme’s Climate Model Intercomparison Project (CMIP5) is compared to observational estimates for the period 1900–2015. Observed and simulated individual contributions to GMSL change (thermal expansion, glacier mass change, ice sheet mass change, landwater storage change) are analyzed and compared to observed GMSL change over the period 1900–2007 using tide gauge reconstructions, and over the period 1993–2015 using satellite altimetry estimates. The model-simulated contributions explain 50% ± 30% (uncertainties 1.65 σ unless indicated otherwise) of the mean observed change from 1901–20 to 1988–2007. Based on attributable biases between observations and models, a number of corrections are proposed, which result in an improved explanation of 75% ± 38% of the observed change. For the satellite era (from 1993–97 to 2011–15) an improved budget closure of 102% ± 33% is found (105% ± 35% when including the proposed bias corrections). Simulated decadal trends increase over the twentieth century, both in the thermal expansion and the combined mass contributions (glaciers, ice sheets, and landwater storage). The mass components explain the majority of sea level rise over the twentieth century, but the thermal expansion has increasingly contributed to sea level rise, starting from 1910 onward and in 2015 accounting for 46% of the total simulated sea level change.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...