GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (24)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2000
    In:  Journal of Physical Oceanography Vol. 30, No. 6 ( 2000-06), p. 1305-1324
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 30, No. 6 ( 2000-06), p. 1305-1324
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2000
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Physical Oceanography Vol. 44, No. 2 ( 2014-02-01), p. 764-780
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 44, No. 2 ( 2014-02-01), p. 764-780
    Abstract: As part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES), 210 subsurface floats were deployed west of the Drake Passage on two targeted density surfaces. Absolute (single particle) diffusivities are calculated for the floats. The focus is on the meridional component, which is less affected by the mean shear. The diffusivities are estimated in several ways, including a novel method based on the probability density function of the meridional displacements. This allows the determination of the range of possible lateral diffusivities, as well as the period over which the spreading can be said to be diffusive. The method is applied to the float data and to synthetic trajectories generated with the Massachusetts Institute of Technology General Circulation Model (MITgcm). Because of ballasting problems, many of the floats did not remain on their targeted density surface. However, the float temperature records suggest that most occupied a small range of densities, so the floats were grouped together for the analysis. The latter focuses on a subset of 109 of the floats, launched near 105°W. The different methods yield a consistent estimate for the diffusivity of 800 ± 200 m2 s−1. The same calculations were made with model particles deployed on 20 different density surfaces and the result for the particles deployed on the neutral density surface γ = 27.7 surface was the same within the errors. The model was then used to map the variation of the diffusivity in the vertical, near the core of the Antarctic Circumpolar Current (ACC). The results suggest mixing is intensified at middepths, between 1500 and 2000 m, consistent with several previous studies.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2007
    In:  Journal of Physical Oceanography Vol. 37, No. 5 ( 2007-05-01), p. 1177-1191
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 37, No. 5 ( 2007-05-01), p. 1177-1191
    Abstract: The stability of baroclinic Rossby waves in large ocean basins is examined, and the quasigeostrophic (QG) results of LaCasce and Pedlosky are generalized. First, stability equations are derived for perturbations on large-scale waves, using the two-layer shallow-water system. These equations resemble the QG stability equations, except that they retain the variation of the internal deformation radius with latitude. The equations are solved numerically for different initial conditions through eigenmode calculations and time stepping. The fastest-growing eigenmodes are intensified at high latitudes, and the slower-growing modes are intensified at lower latitudes. All of the modes have meridional scales and growth times that are comparable to the deformation radius in the latitude range where the eigenmode is intensified. This is what one would expect if one had applied QG theory in latitude bands. The evolution of large-scale waves was then simulated using the Regional Ocean Modeling System primitive equation model. The results are consistent with the theoretical predictions, with deformation-scale perturbations growing at rates inversely proportional to the local deformation radius. The waves succumb to the perturbations at the mid- to high latitudes, but are able to cross the basin at low latitudes before doing so. Also, the barotropic waves produced by the instability propagate faster than the baroclinic long-wave speed, which may explain the discrepancy in speeds noted by Chelton and Schlax.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2007
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Physical Oceanography Vol. 45, No. 9 ( 2015-09), p. 2424-2435
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 45, No. 9 ( 2015-09), p. 2424-2435
    Abstract: A previously published method by Wang et al. for predicting subsurface velocities and density from sea surface buoyancy and surface height is extended by incorporating analytical solutions to make the vertical projection. One solution employs exponential stratification and the second has a weakly stratified surface layer, approximating a mixed layer. The results are evaluated using fields from a numerical simulation of the North Atlantic. The simple exponential solution yields realistic subsurface density and vorticity fields to nearly 1000 m in depth. Including a mixed layer improves the response in the mixed layer itself and at high latitudes where the mixed layer is deeper. It is in the mixed layer that the surface quasigeostrophic approximation is most applicable. Below that the first baroclinic mode dominates, and that mode is well approximated by the analytical solution with exponential stratification.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2004
    In:  Journal of Physical Oceanography Vol. 34, No. 9 ( 2004-09), p. 2027-2041
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 34, No. 9 ( 2004-09), p. 2027-2041
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2004
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Physical Oceanography Vol. 46, No. 7 ( 2016-07), p. 2183-2199
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 46, No. 7 ( 2016-07), p. 2183-2199
    Abstract: Pair-separation statistics of in situ and synthetic surface drifters deployed near the Deepwater Horizon site in the Gulf of Mexico are investigated. The synthetic trajectories derive from a 1-km-resolution data-assimilative Navy Coastal Ocean Model (NCOM) simulation. The in situ drifters were launched in the Grand Lagrangian Deployment (GLAD). Diverse measures of the dispersion are calculated and compared to theoretical predictions. For the NCOM pairs, the measures indicate nonlocal pair dispersion (in which pair separations grow exponentially in time) at the smallest sampled scales. At separations exceeding 100 km, pair motion is uncorrelated, indicating absolute rather than relative dispersion. With the GLAD drifters, however, the statistics are ambiguous, with some indicating local dispersion (in which pair separations exhibit power-law growth) and others suggesting nonlocal dispersion. The difference between the two datasets stems in part from inertial oscillations, which affect the energy levels at small scales without greatly altering pair dispersion. These were significant in GLAD but much weaker in the NCOM simulation. In addition, the GLAD drifters were launched over a limited geographical area, producing few independent realizations and hence lower statistical significance. Restricting the NCOM set to pairs launched at the same locations yields very similar results, suggesting the model is for the most part capturing the observed dispersion.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Physical Oceanography Vol. 49, No. 2 ( 2019-02), p. 585-605
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 49, No. 2 ( 2019-02), p. 585-605
    Abstract: The stability of a horizontally and vertically sheared surface jet is examined, with a focus on the vertical structure of the resultant eddies. Over a flat bottom, the instability is mixed baroclinic/barotropic, producing strong eddies at depth that are characteristically shifted downstream relative to the surface eddies. Baroclinic instability is suppressed over a large slope for retrograde jets (with a flow antiparallel to topographic wave propagation) and to a lesser extent for prograde jets (with flow parallel to topographic wave propagation), as seen previously. In such cases, barotropic (lateral) instability dominates if the jet is sufficiently narrow. This yields surface eddies whose size is independent of the slope but proportional to the jet width. Deep eddies still form, forced by interfacial motion associated with the surface eddies, but they are weaker than under baroclinic instability and are vertically aligned with the surface eddies. A sinusoidal ridge acts similarly, suppressing baroclinic instability and favoring lateral instability in the upper layer. A ridge with a 1-km wavelength and an amplitude of roughly 10 m is sufficient to suppress baroclinic instability. Surveys of bottom roughness from bathymetry acquired with shipboard multibeam echo sounding reveal that such heights are common beneath the Kuroshio, the Antarctic Circumpolar Current, and, to a lesser extent, the Gulf Stream. Consistent with this, vorticity and velocity cross sections from a 1/50° HYCOM simulation suggest that Gulf Stream eddies are vertically aligned, as in the linear stability calculations with strong topography. Thus, lateral instability may be more common than previously thought, owing to topography hindering vertical energy transfer.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2000
    In:  Journal of Physical Oceanography Vol. 30, No. 12 ( 2000-12), p. 3161-3178
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 30, No. 12 ( 2000-12), p. 3161-3178
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2000
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2003
    In:  Journal of Physical Oceanography Vol. 33, No. 12 ( 2003-12), p. 2534-2550
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 33, No. 12 ( 2003-12), p. 2534-2550
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2003
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Climate Vol. 27, No. 11 ( 2014-06-01), p. 4273-4295
    In: Journal of Climate, American Meteorological Society, Vol. 27, No. 11 ( 2014-06-01), p. 4273-4295
    Abstract: The impact of changes in sea surface temperature (SST) on the statistics of extratropical cyclones is investigated. The cyclones were identified in an atmospheric general circulation model (AGCM) using an objective Lagrangian tracking algorithm, applied to the 850-hPa relative vorticity. The statistics were generated for several 20-yr simulations, in which the SSTs were warmed or cooled by 2 K in latitudinal bands. The response was studied in both hemispheres, during summer and winter. Changes in the position of the storm tracks are largely consistent with those seen in previous studies. Increasing SSTs uniformly or increasing the midlatitude SST gradient results in a poleward shift in the storm tracks, with the clearest trends seen in the Southern Hemisphere (SH). Here it is demonstrated that the SST modifications alter the cyclone characteristics as well. When the warming includes the low latitudes and/or the midlatitude gradient is increased, there are more short-lived cyclones. These are also on average more intense and translate faster, both poleward and eastward. The poleward displacement is correlated with cyclone intensity, so that stronger cyclones translate to higher latitudes. This is suggestive of vortex self-advection in the presence of a mean potential vorticity (PV) gradient. The increased eastward translation is correlated with the depth-averaged zonal velocity, and so is likely related to an increase in the steering-level velocity. These changes in cyclone translation probably contribute to the changes in the storm tracks seen previously.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...