GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (7)
Material
Publisher
  • American Meteorological Society  (7)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Atmospheric and Oceanic Technology Vol. 37, No. 7 ( 2020-07-01), p. 1289-1304
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 37, No. 7 ( 2020-07-01), p. 1289-1304
    Abstract: Wave measurements retrieved by Sentinel-1A level-2 ocean (OCN) products are sensitive to swells other than wind seas, and are considered to provide a finer resolution of ocean swells. To assess the capability of swell retrieval globally, OCN products are validated against WAVEWATCH III (WW3) wave spectra for two available incidence angles [“wave mode” (WV); WV1: 23°; WV2: 36°], focused on the integral wave parameters and most energetic wave system of Sentinel-1A . The wave parameter difference between Sentinel-1A and WW3 along antenna look angles for WV1 demonstrates the obvious impact of the nonlinearity influence in the azimuth direction, resulting in an unrealistically high wave height at the low wave frequency, and the spurious split of wave systems in the range direction, due to the vanishing of velocity bunching modulation. WV2 is less pronounced in these two aspects, but tends to shift wave energy to a higher wave frequency in the range direction. The inside discrepancy of wave energy has two noticeable features: the difference in peak wavelengths in the wave spectrum is positively clustered in the azimuth direction and negatively clustered in the range direction; some of the most energetic partitions derived from Sentinel-1A are difficult to assign to any wave systems in WW3. This phenomenon could be related to wind-wave coupling as the azimuth cutoff/WW3 peak wavelength is confined to a ratio below 0.5 for the negative difference between Sentinel-1A and WW3 peak wavelengths and the spectral distance of most energetic wave system in Sentinel-1A highly resembles “swell pools.”
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Physical Oceanography Vol. 49, No. 2 ( 2019-02), p. 543-559
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 49, No. 2 ( 2019-02), p. 543-559
    Abstract: Wind-generated waves can propagate over large distances. Therefore, wave spectra from a fixed point can record information about air–sea interactions in distant areas. In this study, the spectral wave climate for a point in the tropical eastern Pacific Ocean is computed. Several well-defined wave climate systems are observed in the mean wave spectrum. Significant seasonal cycling, long-term trends, and correlations with the Southern Oscillation, the Arctic Oscillation, and the Antarctic Oscillation are observed in the local wave spectra, showing abundant climatic information. Projections of wind vectors on the directions pointing to the target location are used to connect the spectral wave climate and basin-scale wind climate, because significant correlations are observed between the wave spectra and the wind projections of both local and remote wind systems. The origins of all the identified wave climate systems, including the westerlies and the trade winds in both hemispheres, are clearly shown in wind projection maps. Some of these origins are thousands of kilometers away from the target point, demonstrating the validity of this connection. Comparisons are made between wave spectra and the corresponding local and remote wind fields with respect to seasonal and interannual variability and long-term trends. The results show that each frequency and direction of ocean wave spectra at a certain location can be approximately linked to the wind field for a geographical area, implying that it is feasible to reconstruct spectral wave climates from observational wind field data and monitor wind climates from observational wave spectra geographically far away.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Atmospheric and Oceanic Technology Vol. 30, No. 8 ( 2013-08-01), p. 1833-1841
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 30, No. 8 ( 2013-08-01), p. 1833-1841
    Abstract: In this study, a global climatology of swells and wind seas was investigated using near-10-yr collocated wind speed and significant wave height (SWH) measurements from the basic Geophysical Data Record (GDR) of the Jason-1 mission. A statistical method to estimate the wind sea and swell SWHs, respectively, on the basis of wave energy and wind sea/swell probability was proposed. The global distributions of swell/wind sea probability displayed the swell's dominance in the World Ocean. Their seasonal variation showed not only the regions called “swell pools” with high swell probability throughout the year at low latitudes, which have been found in previous studies, but also the regions with high swell probability only in hemispheric summer, termed “seasonal swell pools,” located at the midlatitudes of open oceans. The seasonal geographical patterns of the swell SWH were similar to those of the SWH due to the swell's dominance, and the patterns of the wind SWH were similar to those of the wind speed because of their well-coupled nature. The results could be used as a reference for related applications such as ocean engineering, seafaring, validation of wave models, and studies on climate change.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2019
    In:  Journal of Atmospheric and Oceanic Technology Vol. 36, No. 10 ( 2019-10), p. 1933-1944
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 36, No. 10 ( 2019-10), p. 1933-1944
    Abstract: Numerical wave models can output partitioned wave parameters at each grid point using a spectral partitioning technique. Because these wave partitions are usually organized according to the magnitude of their wave energy without considering the coherence of wave parameters in space, it can be difficult to observe the spatial distributions of wave field features from these outputs. In this study, an approach for spatially tracking coherent wave events (which means a cluster of partitions originating from the same meteorological event) from partitioned numerical wave model outputs is presented to solve this problem. First, an efficient traverse algorithm applicable for different types of grids, termed breadth-first search, is employed to track wave events using the continuity of wave parameters. Second, to reduce the impact of the garden sprinkler effect on tracking, tracked wave events are merged if their boundary outlines and wave parameters on these boundaries are both in good agreement. Partitioned wave information from the Integrated Ocean Waves for Geophysical and other Applications dataset is used to test the performance of this spatial tracking approach. The test results indicate that this approach is able to capture the primary features of partitioned wave fields, demonstrating its potential for wave data analysis, model verification, and data assimilation.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Physical Oceanography Vol. 46, No. 12 ( 2016-12), p. 3563-3569
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 46, No. 12 ( 2016-12), p. 3563-3569
    Abstract: The arrival time of ocean swells is an important factor for offshore and coastal engineering and naval and recreational activities, which can also be used in evaluating the numerical wave model. Using the continuity and pattern of wave heights during the same swell event, a methodology is developed for identifying swell events and verifying swell arrival time in models from buoy data. The swell arrival time in a WAVEWATCH III hindcast database is validated with in situ measurements. The results indicate that the model has a good agreement with the observations but usually predicts an early arrival of swell, about 4 h on average. A histogram shows that about one-quarter of swell events arrive early and three-quarters late by comparison with the model. Many processes that may be responsible for the arrival time errors are discussed, but at this stage it is not possible to distinguish between them from the available data.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 8 ( 2020-04-15), p. 3381-3393
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 8 ( 2020-04-15), p. 3381-3393
    Abstract: Long-term wave spectral statistics can provide a better description of wave climate than integrated wave parameters because several wave climate systems (WCSs) generated by different wind climate systems can coexist at the same location. In this study, global wave climate patterns are presented by spatially tracking point-wise long-term wave spectra (probability density distributions of wave spectral partitions) from a WAVEWATCH III hindcast, providing new insights into global wave climate. Tens of well-defined WCSs, which are generated in different source regions by different wind systems, including prevailing westerlies, polar easterlies, trade winds, and monsoons, were identified. These WCSs are independent of each other because wave systems from different origins travel independently. The spatial distributions of these WCSs can illustrate the entire life cycle of ocean waves, from being generated as dominant wind-seas to becoming less dominant swells in far fields, from a climatic point of view. The mean wave directions in WCS patterns, especially those in westerlies-generated WCSs, are generally in agreement with the great circles on Earth’s surface, which display the propagation routes of ocean swells.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Physical Oceanography Vol. 53, No. 9 ( 2023-09), p. 2089-2103
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 53, No. 9 ( 2023-09), p. 2089-2103
    Abstract: Directional wave spectra are of importance for numerous practical applications such as seafaring and ocean engineering. The wave spectral densities at a certain point in the open ocean are significantly correlated to the local wind field and historical remote wind field. This feature can be used to predict the wave spectrum at that point using the wind field. In this study, a convolutional neural network (CNN) model was established to estimate wave spectra at a target point using the wind field from the ERA5 dataset. A geospatial range where the wind could impact the target point was selected, and then the historical wind field data within the range were analyzed to extract the nonlinear quantitative relationships between wind fields and wave spectra. For the spectral densities at a given direction, the wind data along the direction where waves come from were used as the input of the CNN. The model was trained to minimize the mean square error between the CNN-predicted and ERA5 reanalysis spectral density. The data structure of the wind input is reorganized into a polar grid centered on the target point to make the model applicable to different open-ocean locations worldwide. The results show that the model can predict well the wave spectrum shapes and integral wave parameters. The model allows for the prediction of single-point wave spectra in the open ocean with low computational cost and can be helpful for the study of spectral wave climate. Significance Statement The directional wave spectra (DWS) describe the distribution of wave energy among different frequencies and directions. They are useful for many marine practical applications. Usually, DWS are modeled using numerical wave models (NWMs) based on wave action balance differential equations. Although contemporary NWMs perform well after years of development, their computational costs are relatively high. The fast-developed artificial intelligence (AI) might provide an alternative solution to this task. In this study, convolutional neural networks are used to model the DWS at some selected points in the open ocean. By “learning” from NWM data, AI can effectively simulate single-point DWS in open oceans with low computational cost, which can serve as a faster data-driven surrogate model in related applications.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...