GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (2)
  • 1
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 100, No. 12 ( 2019-12), p. 2433-2450
    Abstract: Descriptions of the experimental design and research highlights obtained from a series of four multiagency field projects held near Cape Canaveral, Florida, are presented. The experiments featured a 3 MW, dual-polarization, C-band Doppler radar that serves in a dual capacity as both a precipitation and cloud radar. This duality stems from a combination of the radar’s high sensitivity and extremely small-resolution volumes produced by the narrow 0.22° beamwidth and the 0.543 m along-range resolution. Experimental highlights focus on the radar’s real-time aircraft tracking capability as well as the finescale reflectivity and eddy structure of a thin nonprecipitating stratus layer. Examples of precipitating storm systems focus on the analysis of the distinctive and nearly linear radar reflectivity signatures (referred to as “streaks”) that are caused as individual hydrometeors traverse the narrow radar beam. Each streak leaves a unique radar reflectivity signature that is analyzed with regard to estimating the underlying particle properties such as size, fall speed, and oscillation characteristics. The observed along-streak reflectivity oscillations are complex and discussed in terms of diameter-dependent drop dynamics (oscillation frequency and viscous damping time scales) as well as radar-dependent factors governing the near-field Fresnel radiation pattern and inferred drop–drop interference.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Applied Meteorology and Climatology Vol. 54, No. 2 ( 2015-02), p. 352-369
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 54, No. 2 ( 2015-02), p. 352-369
    Abstract: To better understand the physical processes of the stable boundary layer and to quantify “submeso motions” in moderately complex terrain, exploratory case-study analyses were performed using observational field data supplemented by gridded North American Regional Reanalysis data and Pennsylvania State University real-time Weather Research and Forecasting Model output. Submeso motions are nominally defined as all motions between the largest turbulent scales and the smallest mesoscales. Seven nighttime cases from August and September of 2011 are chosen from a central Pennsylvania [“Rock Springs” (RS)] network of eight ground-based towers and two sound detection and ranging (sodar) systems . The observation network is located near Tussey Ridge, ~15 km southeast of the Allegheny Mountains. The seven cases are classified by the dominant synoptic-flow direction and proximity to terrain to assess the influence of synoptic conditions on the local submeso and mesogamma motions. It is found that synoptic winds with a large crossing angle over nearby Tussey Ridge can generate mesogamma wave motions and larger-magnitude submeso temperature and wind fluctuations in the RS network than do winds from the direction of the more distant Allegheny Mountains. Cases with synoptic winds that are nearly parallel to the topographic contours or are generally weak exhibit the smallest fluctuations. Changes in the magnitude of near-surface submeso temperature and wind fluctuations in response to local indicator variables are also analyzed. The observed submeso wind and temperature fluctuations are generally larger when the low-level wind speed and thermal stratification, respectively, are greater, but the synoptic flow and its relation to the terrain also play an important role.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...