GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (1)
Material
Publisher
  • American Meteorological Society  (1)
Language
Years
Subjects(RVK)
  • 1
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 11 ( 2013-06-01), p. 3657-3670
    Abstract: Proposed climate mitigation measures do not account for direct biophysical climate impacts of land-use change (LUC), nor do the stabilization targets modeled for phase 5 of the Coupled Model Intercomparison Project (CMIP5) representative concentration pathways (RCPs). To examine the significance of such effects on global and regional patterns of climate change, a baseline and an alternative scenario of future anthropogenic activity are simulated within the Integrated Earth System Model, which couples the Global Change Assessment Model, Global Land-Use Model, and Community Earth System Model. The alternative scenario has high biofuel utilization and approximately 50% less global forest cover than the baseline, standard RCP4.5 scenario. Both scenarios stabilize radiative forcing from atmospheric constituents at 4.5 W m−2 by 2100. Thus, differences between their climate predictions quantify the biophysical effects of LUC. Offline radiative transfer and land model simulations are also utilized to identify forcing and feedback mechanisms driving the coupled response. Boreal deforestation is found to strongly influence climate because of increased albedo coupled with a regional-scale water vapor feedback. Globally, the alternative scenario yields a twenty-first-century warming trend that is 0.5°C cooler than baseline, driven by a 1 W m−2 mean decrease in radiative forcing that is distributed unevenly around the globe. Some regions are cooler in the alternative scenario than in 2005. These results demonstrate that neither climate change nor actual radiative forcing is uniquely related to atmospheric forcing targets such as those found in the RCPs but rather depend on particulars of the socioeconomic pathways followed to meet each target.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...