GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (13)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 1993
    In:  Journal of Physical Oceanography Vol. 23, No. 7 ( 1993-07), p. 1363-1388
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 23, No. 7 ( 1993-07), p. 1363-1388
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1993
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 1997
    In:  Journal of Physical Oceanography Vol. 27, No. 6 ( 1997-06), p. 1038-1053
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 27, No. 6 ( 1997-06), p. 1038-1053
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1997
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Physical Oceanography Vol. 38, No. 12 ( 2008-12-01), p. 2619-2638
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 38, No. 12 ( 2008-12-01), p. 2619-2638
    Abstract: The seasonality of the baroclinic slope current system along the western European margin in the Bay of Biscay and along the northern Iberian Peninsula is investigated in a joint analysis of an analytical model and numerical simulations with various forcings. A distinction is made between local winds and basin-scale winds, in which the effect of the latter is indirectly apparent through the basin-scale density gradients. The slope currents are mainly forced by the large-scale structure of the density field. The analysis indicates significant differences in the behavior of the uppermost slope current and of the deeper currents. At all depths, seasonal variations in the large-scale density structure of the ocean alter the strength of the slope currents but are not able to cause robust, long-lasting reversals. Reversals of the uppermost slope current appear to be caused by changes in the alongshore component of the local wind stress, provided that the opposing forcing from the density structure is weak enough. However, the deeper slope currents are not very much affected by the wind stress, so that flow reversals can be explained neither by the wind nor by seasonal changes in the density structure. A numerical simulation suggests that the reversals of the deeper slope currents are at least partly forced by seasonal changes in the flow upstream of the slope current system. The authors demonstrate that the larger part of these seasonal changes is associated with annual baroclinic Rossby waves caused by the seasonal cycle of the large-scale wind stress over the whole basin.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 1999
    In:  Journal of Physical Oceanography Vol. 29, No. 11 ( 1999-11), p. 2753-2768
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 29, No. 11 ( 1999-11), p. 2753-2768
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1999
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Climate Vol. 28, No. 19 ( 2015-10-01), p. 7503-7517
    In: Journal of Climate, American Meteorological Society, Vol. 28, No. 19 ( 2015-10-01), p. 7503-7517
    Abstract: Large differences in the Atlantic meridional overturning circulation (AMOC) exhibited between the available ocean models pose problems as to how they can be interpreted for climate policy. A novel Lagrangian methodology has been developed for use with ocean models that enables a decomposition of the AMOC according to its source waters of subduction from the mixed layer of different geographical regions. The method is described here and used to decompose the AMOC of the Centre National de Recherches Météorologiques (CNRM) ocean model, which is approximately 4.5 Sv (1 Sv = 106 m3 s−1) too weak at 26°N, compared to observations. Contributions from mixed layer subduction to the peak AMOC at 26°N in the model are dominated by the Labrador Sea, which contributes 7.51 Sv; but contributions from the Nordic seas, the Irminger Sea, and the Rockall basin are also important. These waters mostly originate where deep mixed layers border the topographic slopes of the Subpolar Gyre and Nordic seas. The too-weak model AMOC can be explained by weak model representations of the overflow and of Irminger Sea subduction. These are offset by the large Labrador Sea component, which is likely to be too strong as a result of unrealistically distributed and too-deep mixed layers near the shelf.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 21 ( 2017-11), p. 8615-8631
    Abstract: We evaluate the output from a widely used ocean carbon cycle model to identify the subduction and obduction (reemergence) rates of anthropogenic carbon (C ant ) for climatological conditions during the World Ocean Circulation Experiment (WOCE) era in 1995 using a new set of Lagrangian diagnostic tools. The principal scientific value of the Lagrangian diagnostics is in providing a new means to connect C ant reemergence pathways to the relatively rapid renewal time scales of mode waters through the overturning circulation. Our main finding is that for this model with 2.04 PgC yr −1 of uptake of C ant via gas exchange, the subduction and obduction rates across the base of the mixed layer (ML base ) are 4.96 and 4.50 PgC yr −1 , respectively, which are twice as large as the gas exchange at the surface. Given that there is net accumulation of 0.17 PgC yr −1 in the mixed layer itself, this implies the residual downward C ant transport of 1.40 PgC yr −1 across the ML base is associated with diffusion. Importantly, the net patterns for subduction and obduction transports of C ant mirror the large-scale patterns for transport of water volume, thereby illustrating the processes controlling C ant uptake. Although the net transfer across the ML base by compensating subduction and obduction is relatively smaller than the diffusion, the localized pattern of C ant subduction and obduction implies significant regional impacts. The median time scale for reemergence of obducting particles is short ( 〈 10 yr), indicating that reemergence should contribute to limiting future carbon uptake through its contribution to perturbing the Revelle factor for surface waters.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Physical Oceanography Vol. 38, No. 7 ( 2008-07-01), p. 1401-1425
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 38, No. 7 ( 2008-07-01), p. 1401-1425
    Abstract: Recent studies have proposed the Southern Ocean as the site of large water-mass transformations; other studies propose that this basin is among the main drivers for North Atlantic Deep Water (NADW) circulation. A modeling contribution toward understanding the role of this basin in the global thermohaline circulation can thus be of interest. In particular, key pathways and transformations associated with the thermohaline circulation in the Southern Ocean of an ice–ocean coupled model have been identified here through the extensive use of quantitative Lagrangian diagnostics. The model Southern Ocean is characterized by a shallow overturning circulation transforming 20 Sv (1 Sv ≡ 106 m3 s−1) of thermocline waters into mode waters and a deep overturning related to the formation of Antarctic Bottom Water. Mode and intermediate waters contribute to 80% of the upper branch of the overturning in the Atlantic Ocean north of 30°S. A net upwelling of 11.5 Sv of Circumpolar Deep Waters is simulated in the Southern Ocean. Antarctic Bottom Water upwells into deep layers in the Pacific basin, forming Circumpolar Deep Water and subsurface thermocline water. The Southern Ocean is a powerful consumer of NADW: about 40% of NADW net export was found to upwell in the Southern Ocean, and 40% is transformed into Antarctic Bottom Water. The upwelling occurs south of the Polar Front and mainly in the Indian and Pacific Ocean sectors. The transformation of NADW to lighter water occurs in two steps: vertical mixing at the base of the mixed layer first decreases the salinity of the deep water upwelling south of the Antarctic Circumpolar Current, followed by heat input by air–sea and diffusive fluxes to complete the transformation to mode and intermediate waters.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 1997
    In:  Journal of Climate Vol. 10, No. 7 ( 1997-07), p. 1473-1486
    In: Journal of Climate, American Meteorological Society, Vol. 10, No. 7 ( 1997-07), p. 1473-1486
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1997
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Physical Oceanography Vol. 38, No. 2 ( 2008-02-01), p. 400-417
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 38, No. 2 ( 2008-02-01), p. 400-417
    Abstract: Tropical instability waves and tropical instability vortices (TIVs) exert major controls on ocean dynamics, thermodynamics, and biology on intraseasonal to seasonal time scales. To understand the fundamental mechanisms at play, a Lagrangian analysis of the 3D circulation of westward-propagating TIVs was performed in a high-resolution Atlantic Ocean simulation. The model reproduces the main temperature and velocity features of the tropical Atlantic mean state and the TIVs. Lagrangian diagnostics were used to track the water masses transported in vortices and exchanged with surrounding waters. The 3D circulation within vortices is consistent with previous observations and dominated by anticyclonic rotation with downwelling and upwelling near the leading and trailing edges of the vortex, respectively. This convergent flow creates sharp gradients at the TIV southwestern edge, where vertical mixing is most efficient. While TIVs remain highly dynamically coherent throughout their lifetime, significant exchanges occur with their surroundings, with 50% of their water being renewed over one rotation cycle. A detailed investigation of the eddies’ sources and sinks reveals that they mostly transport southern water zonally, while northern waters are mostly passing through or fluxed southward in their lee. A notable source of entrained water is the Equatorial Undercurrent.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Physical Oceanography Vol. 35, No. 7 ( 2005-07-01), p. 1206-1222
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 35, No. 7 ( 2005-07-01), p. 1206-1222
    Abstract: The northward export of intermediate water from Drake Passage is investigated in two global ocean general circulation models (GCMs) by means of quantitative particle tracing diagnostics. This study shows that a total of about 23 Sv (Sv ≡ 106 m3 s−1) is exported from Drake Passage to the equator. The Atlantic and Pacific Oceans are the main catchment basins with 7 and 15 Sv, respectively. Only 1–2 Sv of the water exported to the Atlantic equator follow the direct cold route from Drake Passage without entering the Indian Ocean. The remainder loops first into the Indian Ocean subtropical gyre and flows eventually into the Atlantic Ocean by Agulhas leakage. The authors assess the robustness of a theory that relates the export from Drake Passage to the equator to the wind stress over the Southern Ocean. Our GCM results are in reasonable agreement with the theory that predicts the total export. However, the theory cannot be applied to individual basins because of interocean exchanges through the “supergyre” mechanism and other nonlinear processes such as the Agulhas rings. The export of water from Drake Passage starts mainly as an Ekman flow just northward of the latitude band of the Antarctic Circumpolar Current south of South America. Waters quickly subduct and are transferred to the ocean interior as they travel equatorward. They flow along the eastern boundaries in the Sverdrup interior and cross the southern basins northwestward to reach the equator within the western boundary current systems.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...