GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • Data
  • American Meteorological Society  (1)
  • IEEE  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2004. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 29 (2004): 1264-1279, doi:10.1109/JOE.2004.836997.
    Description: We present analyses of fluctuations seen in acoustic signals transmitted by two 400-Hz sources moored as part of the ASIAEX 2001 South China Sea (SCS) experiment. One source was near the bottom in 350-m deep water 31.3 km offshore from the receiving array, and the other was near the bottom in 135-m deep water 20.6 km alongshore from the array. Time series of signal intensity measured at individual phones of a 16-element vertical line array are analyzed, as well as time series of intensity averaged over the array. Signals were recorded from 2 May to 17 May 2001. Fluctuations were observed at periods ranging from subtidal (days) to the shortest periods resolved with our signaling (10 s). Short-period fluctuations of depth- and time-averaged intensity have scintillation indexes (computed within 3-h long windows) which peak at values near 0.5 during an interval of numerous high-amplitude internal gravity waves, and which are lower during intervals with fewer internal waves. The decorrelation times of the averaged intensity (energy level) are also closely related to internal wave properties. Scintillation indexes computed for unaveraged pulses arriving at individual phones often exceed unity.
    Description: This work was supported by the U.S. Office of Naval Research.
    Keywords: Acoustic intensity ; Fluctuation ; Underwater acoustic propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1070723 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(8), (2019): 2185-2205. doi:10.1175/JCLI-D-18-0538.1.
    Description: Much attention has been paid to the climatic impacts of changes in the Kuroshio Extension, instead of the Kuroshio in the East China Sea (ECS). This study, however, reveals the prominent influences of the lateral shift of the Kuroshio at interannual time scale in late spring [April–June (AMJ)] on the sea surface temperature (SST) and precipitation in summer around the ECS, based on high-resolution satellite observations and ERA-Interim. A persistent offshore displacement of the Kuroshio during AMJ can result in cold SST anomalies in the northern ECS and the Japan/East Sea until late summer, which correspondingly causes anomalous cooling of the lower troposphere. Consequently, the anomalous cold SST in the northern ECS acts as a key driver to robustly enhance the precipitation from the Yangtze River delta to Kyushu in early summer (May–August) and over the central ECS in late summer (July–September). In view of the moisture budget analysis, two different physical processes modulated by the lateral shift of the Kuroshio are identified to account for the distinct responses of precipitation in early and late summer, respectively. First, the anomalous cold SST in the northern ECS induced by the Kuroshio offshore shift is likely conducive to the earlier arrival of the mei-yu–baiu front at 30°–32°N and its subsequent slower northward movement, which may prolong the local rainy season, leading to the increased rain belt in early summer. Second, the persistent cold SST anomalies in late summer strengthen the near-surface baroclinicity and the associated strong atmospheric fronts embedded in the extratropical cyclones over the central ECS, which in turn enhances the local rainfall.
    Description: We appreciate three anonymous reviewers for their thoughtful and constructive comments. This work is supported by the National Key Research and Development Program of China (2016YFA0601804), the National Natural Science Foundation of China (NSFC) Projects (91858102, 41490643, 41490640, 41506009, U1606402) and the OUC–WHOI joint research program (21366).
    Description: 2019-10-01
    Keywords: Continental shelf/slope ; Atmosphere-ocean interaction ; Boundary currents ; Precipitation ; Interannual variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...