GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Medical Association (AMA)  (2)
  • 1
    In: JAMA Network Open, American Medical Association (AMA), Vol. 5, No. 12 ( 2022-12-22), p. e2247957-
    Abstract: Physical and social neighborhood attributes may have implications for children’s growth and development patterns. The extent to which these attributes are associated with body mass index (BMI) trajectories and obesity risk from childhood to adolescence remains understudied. Objective To examine associations of neighborhood-level measures of opportunity and social vulnerability with trajectories of BMI and obesity risk from birth to adolescence. Design, Setting, and Participants This cohort study used data from 54 cohorts (20 677 children) participating in the Environmental Influences on Child Health Outcomes (ECHO) program from January 1, 1995, to January 1, 2022. Participant inclusion required at least 1 geocoded residential address and anthropometric measure (taken at the same time or after the address date) from birth through adolescence. Data were analyzed from February 1 to June 30, 2022. Exposures Census tract–level Child Opportunity Index (COI) and Social Vulnerability Index (SVI) linked to geocoded residential addresses at birth and in infancy (age range, 0.5-1.5 years), early childhood (age range, 2.0-4.8 years), and mid-childhood (age range, 5.0-9.8 years). Main Outcomes and Measures BMI (calculated as weight in kilograms divided by length [if aged & amp;lt;2 years] or height in meters squared) and obesity (age- and sex-specific BMI ≥95th percentile). Based on nationwide distributions of the COI and SVI, Census tract rankings were grouped into 5 categories: very low ( & amp;lt;20th percentile), low (20th percentile to & amp;lt;40th percentile), moderate (40th percentile to & amp;lt;60th percentile), high (60th percentile to & amp;lt;80th percentile), or very high (≥80th percentile) opportunity (COI) or vulnerability (SVI). Results Among 20 677 children, 10 747 (52.0%) were male; 12 463 of 20 105 (62.0%) were White, and 16 036 of 20 333 (78.9%) were non-Hispanic. (Some data for race and ethnicity were missing.) Overall, 29.9% of children in the ECHO program resided in areas with the most advantageous characteristics. For example, at birth, 26.7% of children lived in areas with very high COI, and 25.3% lived in areas with very low SVI; in mid-childhood, 30.6% lived in areas with very high COI and 28.4% lived in areas with very low SVI. Linear mixed-effects models revealed that at every life stage, children who resided in areas with higher COI (vs very low COI) had lower mean BMI trajectories and lower risk of obesity from childhood to adolescence, independent of family sociodemographic and prenatal characteristics. For example, among children with obesity at age 10 years, the risk ratio was 0.21 (95% CI, 0.12-0.34) for very high COI at birth, 0.31 (95% CI, 0.20-0.51) for high COI at birth, 0.46 (95% CI, 0.28-0.74) for moderate COI at birth, and 0.53 (95% CI, 0.32-0.86) for low COI at birth. Similar patterns of findings were observed for children who resided in areas with lower SVI (vs very high SVI). For example, among children with obesity at age 10 years, the risk ratio was 0.17 (95% CI, 0.10-0.30) for very low SVI at birth, 0.20 (95% CI, 0.11-0.35) for low SVI at birth, 0.42 (95% CI, 0.24-0.75) for moderate SVI at birth, and 0.43 (95% CI, 0.24-0.76) for high SVI at birth. For both indices, effect estimates for mean BMI difference and obesity risk were larger at an older age of outcome measurement. In addition, exposure to COI or SVI at birth was associated with the most substantial difference in subsequent mean BMI and risk of obesity compared with exposure at later life stages. Conclusions and Relevance In this cohort study, residing in higher-opportunity and lower-vulnerability neighborhoods in early life, especially at birth, was associated with a lower mean BMI trajectory and a lower risk of obesity from childhood to adolescence. Future research should clarify whether initiatives or policies that alter specific components of neighborhood environment would be beneficial in preventing excess weight in children.
    Type of Medium: Online Resource
    ISSN: 2574-3805
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2022
    detail.hit.zdb_id: 2931249-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: JAMA Pediatrics, American Medical Association (AMA), Vol. 177, No. 10 ( 2023-10-01), p. 1055-
    Abstract: The extent to which physical and social attributes of neighborhoods play a role in childhood asthma remains understudied. Objective To examine associations of neighborhood-level opportunity and social vulnerability measures with childhood asthma incidence. Design, Setting, and Participants This cohort study used data from children in 46 cohorts participating in the Environmental Influences on Child Health Outcomes (ECHO) Program between January 1, 1995, and August 31, 2022. Participant inclusion required at least 1 geocoded residential address from birth and parent or caregiver report of a physician’s diagnosis of asthma. Participants were followed up to the date of asthma diagnosis, date of last visit or loss to follow-up, or age 20 years. Exposures Census tract–level Child Opportunity Index (COI) and Social Vulnerability Index (SVI) at birth, infancy, or early childhood, grouped into very low ( & amp;lt;20th percentile), low (20th to & amp;lt;40th percentile), moderate (40th to & amp;lt;60th percentile), high (60th to & amp;lt;80th percentile), or very high (≥80th percentile) COI or SVI. Main Outcomes and Measures The main outcome was parent or caregiver report of a physician’s diagnosis of childhood asthma (yes or no). Poisson regression models estimated asthma incidence rate ratios (IRRs) associated with COI and SVI scores at each life stage. Results The study included 10 516 children (median age at follow-up, 9.1 years [IQR, 7.0-11.6 years]; 52.2% male), of whom 20.6% lived in neighborhoods with very high COI and very low SVI. The overall asthma incidence rate was 23.3 cases per 1000 child-years (median age at asthma diagnosis, 6.6 years [IQR, 4.1-9.9 years] ). High and very high (vs very low) COI at birth, infancy, or early childhood were associated with lower subsequent asthma incidence independent of sociodemographic characteristics, parental asthma history, and parity. For example, compared with very low COI, the adjusted IRR for asthma was 0.87 (95% CI, 0.75-1.00) for high COI at birth and 0.83 (95% CI, 0.71-0.98) for very high COI at birth. These associations appeared to be attributable to the health and environmental and the social and economic domains of the COI. The SVI during early life was not significantly associated with asthma incidence. For example, compared with a very high SVI, the adjusted IRR for asthma was 0.88 (95% CI, 0.75-1.02) for low SVI at birth and 0.89 (95% CI, 0.76-1.03) for very low SVI at birth. Conclusions In this cohort study, high and very high neighborhood opportunity during early life compared with very low neighborhood opportunity were associated with lower childhood asthma incidence. These findings suggest the need for future studies examining whether investing in health and environmental or social and economic resources in early life would promote health equity in pediatric asthma.
    Type of Medium: Online Resource
    ISSN: 2168-6203
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...