GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Medical Association (AMA)  (1)
  • The Company of Biologists  (1)
  • 1
    Publication Date: 2012-04-04
    Description: Context Leucovorin, fluorouracil, and oxaliplatin (FOLFOX) is the standard adjuvant therapy for resected stage III colon cancer. Adding cetuximab to FOLFOX benefits patients with metastatic wild-type KRAS but not mutated KRAS colon cancer. Objective To assess the potential benefit of cetuximab added to the modified sixth version of the FOLFOX regimen (mFOLFOX6) in patients with resected stage III wild-type KRAS colon cancer. Design, Setting, and Participants A randomized trial of 2686 patients aged 18 years or older at multiple institutions across North America enrolled following resection and informed consent between February 10, 2004, and November 25, 2009. The primary randomized comparison was 12 biweekly cycles of mFOLFOX6 with and without cetuximab. KRAS mutation status was centrally determined. The trial was halted after a planned interim analysis of 48% of predicted events (246/515) occurring in 1863 (of 2070 planned) patients with tumors having wild-type KRAS . A total of 717 patients with mutated KRAS and 106 with indeterminate KRAS were accrued. The 2070 patients with wild-type KRAS provided 90% power to detect a hazard ratio (HR) of 1.33 (2-sided α = .05), with planned interim efficacy analyses after 25%, 50%, and 75% of expected relapses. Main Outcome Measures Disease-free survival in patients with wild-type KRAS mutations. Secondary end points included overall survival and toxicity. Results Median (range) follow-up was 28 (0-68) months. The trial demonstrated no benefit when adding cetuximab. Three-year disease-free survival for mFOLFOX6 alone was 74.6% vs 71.5% with the addition of cetuximab (HR, 1.21; 95% CI, 0.98-1.49; P  = .08) in patients with wild-type KRAS , and 67.1% vs 65.0% (HR, 1.12; 95% CI, 0.86-1.46; P  = .38) in patients with mutated KRAS , with no significant benefit in any subgroups assessed. Among all patients, grade 3 or higher adverse events (72.5% vs 52.3%; odds ratio [OR], 2.4; 95% CI, 2.1-2.8; P  〈 .001) and failure to complete 12 cycles (33% vs 23%; OR, 1.6; 95% CI, 1.4-1.9; P  〈 .001) were significantly higher with cetuximab. Increased toxicity and greater detrimental differences in all outcomes were observed in patients aged 70 years or older. Conclusion Among patients with stage III resected colon cancer, the use of cetuximab with adjuvant mFOLFOX6 compared with mFOLFOX6 alone did not result in improved disease-free survival. Trial Registration clinicaltrials.gov Identifier: NCT00079274
    Keywords: Oncology, Colon Cancer, Surgery, Surgical Interventions, Colorectal Surgery, Randomized Controlled Trial, Prognosis/ Outcomes, Drug Therapy
    Print ISSN: 0098-7484
    Electronic ISSN: 1538-3598
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-22
    Description: Cortney M. Bouldin, Alyssa J. Manning, Yu-Hsuan Peng, Gist H. Farr III, King L. Hung, Alice Dong, and David Kimelman Anterior to posterior growth of the vertebrate body is fueled by a posteriorly located population of bipotential neuro-mesodermal progenitor cells. These progenitors have a limited rate of proliferation and their maintenance is crucial for completion of the anterior-posterior axis. How they leave the progenitor state and commit to differentiation is largely unknown, in part because widespread modulation of factors essential for this process causes organism-wide effects. Using a novel assay, we show that zebrafish Tbx16 (Spadetail) is capable of advancing mesodermal differentiation cell-autonomously. Tbx16 locks cells into the mesodermal state by not only activating downstream mesodermal genes, but also by repressing bipotential progenitor genes, in part through a direct repression of sox2 . We demonstrate that tbx16 is activated as cells move from an intermediate Wnt environment to a high Wnt environment, and show that Wnt signaling activates the tbx16 promoter. Importantly, high-level Wnt signaling is able to accelerate mesodermal differentiation cell-autonomously, just as we observe with Tbx16. Finally, because our assay for mesodermal commitment is quantitative we are able to show that the acceleration of mesodermal differentiation is surprisingly incomplete, implicating a potential separation of cell movement and differentiation during this process. Together, our data suggest a model in which high levels of Wnt signaling induce a transition to mesoderm by directly activating tbx16 , which in turn acts to irreversibly flip a bistable switch, leading to maintenance of the mesodermal fate and repression of the bipotential progenitor state, even as cells leave the initial high-Wnt environment.
    Print ISSN: 0950-1991
    Electronic ISSN: 1477-9129
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...