GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-20
    Description: Plastic deformation in metallic glasses is highly localized and often associated with shear banding, which may cause momentary release of heat upon fracture. Here, we report an explosive fracture phenomenon associated with momentary (∼10 ms) light emission ( flash ) in Lanthanum-based (LaAlNi) metallic glass microwires (dia. ∼50  μ m) under quasi-static tensile loading. The load-displacement data as well as the visual information of the tensile deformation process were acquired through an in situ measurement set-up, which clearly showed nonlinear stress (σ)–strain ( ϵ ) curves prior to yielding and also captured the occurrence of the flash at high fracture stresses (∼1 GPa). Through the postmortem fractographic analysis, it can be revealed that the fracto-emission upon quasi-static loading could be mainly attributed to the localized adiabatic work accumulated at a very large elastic strain confined within the microscale sample volume, followed by a localized high temperature rise up to ∼1000 K at the fracture surface through localized energy dissipation. Our findings suggest that the La-based metallic glass microwires could be useful for energetic microchips, micro-ignition devices, and other functional applications.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-07
    Description: Tuning low resistance state is crucial for resistance random access memory (RRAM) that aims to achieve optimal read margin and design flexibility. By back-to-back stacking two nanometallic bipolar RRAMs with different thickness into a complementary structure, we have found that its low resistance can be reliably tuned over several orders of magnitude. Such high tunability originates from the exponential thickness dependence of the high resistance state of nanometallic RRAM, in which electron wave localization in a random network gives rise to the unique scaling behavior. The complementary nanometallic RRAM provides electroforming-free, multi-resistance-state, sub-100 ns switching capability with advantageous characteristics for memory arrays.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-10
    Description: A strain-induced nanoscale phase mixture in epitaxial BiFeO 3 (110) films is investigated. High resolution synchrotron x-ray diffraction shows that a monoclinic M 2 phase (orthorhombic-like, with a c/a  ∼ 1.01) coexists as the intermediate phase between monoclinic M 1 phase (tetragonal-like, with a c/a  ∼ 1.26) and monoclinic M 3 phase (rhombohedral-like, with a c/a  ∼ 1.00), as the film thickness increases from 10 to 190 nm. Cross-sectional transmission electron microscopy images reveal the evolution of domain patterns with coexistence of multiple phases. The different ferroelectric polarization directions of these phases, as shown by piezoelectric force microscopy, indicate a strong potential for high electromechanical response. The shear strain ϵ 13 is found to be a significant driving factor to reduce strain energy as film thickness increases, according to our theoretical calculations based on the measured lattice parameters. The nanoscale mixed phases, large structure distortions, and polarization rotations among the multiple phases indicate that (110)-oriented epitaxial films provide a promising way to control multifunctionalities of BiFeO 3 and an alternative direction to explore the rich physics of perovskite system.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...