GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 9 (1997), S. 3687-3696 
    ISSN: 1089-7666
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: A linear stability analysis was carried out for axial flow between a rotating porous inner cylinder and a concentric, stationary, porous outer cylinder when radial flow is present for several radius ratios. The radial Reynolds number, based on the radial velocity at the inner cylinder and the inner radius, was varied from −15 to 15, and the axial Reynolds number based on the mean axial velocity and the annular gap was varied from 0 to 10. Linear stability analysis for axisymmetric perturbations results in an eigenvalue problem that was solved using a numerical technique based on the Runge–Kutta method combined with a shooting procedure. At a given radius ratio, the critical Taylor number at which Taylor vortices first appear for radial outflow decreases slightly for small positive radial Reynolds numbers and then increases as the radial Reynolds number becomes more positive. For radial inflow, the critical Taylor number increases as the radial Reynolds number becomes more negative. For a given radial Reynolds number, increasing the axial Reynolds number increases the critical Taylor number for transition very slightly. The critical wave velocity decreases slightly for small positive radial Reynolds numbers, but increases for larger positive and all negative radial Reynolds numbers. The perturbed velocities are very similar to those for no axial flow. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 2694-2699 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: Previous ab initio studies of the X˜ 2A′H2PO radical have reported dramatically differing P–O bond distances when using spin-restricted wave functions predicting two artifactual isomers of H2PO: a singly bonded oxygen-centered radical and a doubly bonded phosphorus-centered radical. We show that large basis sets coupled with high levels of dynamical electron correlation are required to correctly describe the P–O bond in H2PO as well as the unpaired electron density as evidenced by the Fermi contact terms and anisotropic components of the 31P, 1H, and 17O hyperfine splitting (hfs) constants. The optimized geometry, harmonic vibrational frequencies, and hfs constants of H2PO were determined at several coupled-cluster levels of theory using both spin-restricted (ROHF) and spin-unrestricted (UHF) Hartree–Fock reference wave functions. The geometrical parameters at the coupled-cluster level with single, double, and perturbatively applied triple substitutions [CCSD(T)] using Dunning's correlation consistent polarized valence quadruple-ζ basis set (cc-pVQZ) are r(P–O)=1.492 Å; r(P–H)=1.410 Å; (angle)(HPH)=102.63°; (angle)(HPO)=114.92°. These are in excellent agreement with those derived from recent gas phase microwave data, with the surprising exception of the P–H distance which deviates 0.02 Å from experiment. The value of the P–O harmonic stretching frequency at the CCSD(T) level within the cc-pVQZ basis set is 1190 cm−1, in good agreement with the experimental fundamental frequency of 1147 cm−1 obtained by Withnall and Andrews and in constrast to previous speculation that this experimental band may have been misassigned. Hyperfine splitting constants determined at the TZ2P(f,d)/UHF-CCSD(T) level are in very good agreement with experimental values with an average deviation of 23 MHz. © 1998 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...