GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 13 (2001), S. 1755-1767 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The continuity and momentum equations do not imply a Reynolds number dependence of turbulence data when wall variables are used for normalization. However, experimental and numerical results show a Reynolds number dependence of turbulence intensity very close to the wall. The cause of this is explained. It results from the behavior of a sink term in the dissipation rate equation which shows a Reynolds number dependence in the limit of two-component two-dimensional turbulence as it exists close to walls. Away from the near-wall region the Reynolds number dependence originates from the streamwise pressure gradient which enters into the equations for the turbulent kinetic energy and turbulent dissipation rate through the gradient production processes. The low-Reynolds number effects in turbulent channel flow were investigated experimentally using the laser Doppler anemometry (LDA) measuring technique. A new method was used to eliminate the influence of the limited spatial resolution of the LDA measuring control volume. Results are presented for the limiting behavior of the turbulent intensity near the wall and its variation with the Reynolds number. The present LDA measurements confirm the trend in the data of direct numerical simulations. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-07
    Description: Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-01
    Description: Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (∼10 4   - 10 6  cm −2 ) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c -2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t  = 3 × 10 12 , 2 × 10 15 , and 5 × 10 14  cm −3 , respectively. The E c -2.92 eV level is observed to be the primary compensating defect in as-grown n -type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n -GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Thus, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-07-13
    Description: The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-21
    Description: We report on magnetotransport measurements on a MnAs nanocluster arrangement consisting of two elongated single-domain clusters connected by a metal spacer. The arrangement was grown on GaAs(111)B-substrates by selective-area metal organic vapor phase epitaxy. Its structural properties were investigated using scanning-electron microscopy and atomic-force microscopy, while its magnetic domain structure was analyzed by magnetic-force microscopy. The magnetoresistance of the arrangement was investigated at 120 K for two measurement geometries with the magnetic field oriented in the sample plane. For both geometries, discrete jumps of the magnetoresistance of the MnAs nanocluster arrangement were observed. These jumps can be explained by magnetic-field induced switching of the relative orientation of the magnetizations of the two clusters which affects the spin-dependent scattering in the interface region between the clusters. For a magnetic field orientation parallel to the nanoclusters' elongation direction a spin-valve like behavior was observed, showing that ferromagnetic nanoclusters may be suitable building blocks for planar magnetoelectronic devices.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-12
    Description: We present the experimental observation of the localized amplification of externally excited, propagating spin waves in a transversely in-plane magnetized Ni 81 Fe 19 magnonic waveguide by means of parallel pumping. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the dependency of the amplification on the applied pumping power and on the delay between the input spin-wave packet and the pumping pulse. We show that there are two different operation regimes: At large pumping powers, the spin-wave packet needs to enter the amplifier before the pumping is switched on in order to be amplified while at low powers the spin-wave packet can arrive at any time during the pumping pulse.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    The American Society for Biochemistry and Molecular Biology (ASBMB)
    Publication Date: 2015-07-25
    Description: CLC-K chloride channels are expressed in the kidney and in the inner ear and require the accessory subunit barttin for proper function and membrane insertion. Barttin exerts multiple functions on CLC-proteins: it modifies protein stability and intracellular trafficking as well as channel activity, ion conduction, and gating. So far, the molecular determinants of these distinct barttin functions have remained elusive. Here we performed serial perturbation mutagenesis to identify the sequence determinants of barttin function. Barttin consists of two transmembrane helices followed by a long intracellular carboxyl terminus, and earlier work demonstrated that the transmembrane core of barttin suffices for most effects on the α-subunit. We individually substituted every amino acid of the predicted transmembrane core (amino acids 9–26 and 35–55) with tryptophan, co-expressed mutant barttin with hClC-Ka or V166E rClC-K1, and characterized CLC-K/barttin channels by patch clamp techniques, biochemistry, and confocal microscopy. The majority of mutations left the chaperone function of barttin, i.e. the effects on endoplasmic reticulum exit and surface membrane insertion, unaffected. In contrast, tryptophan insertion at multiple positions resulted in impaired activity of hClC-Ka/barttin and changes in gating of V166E rClC-K1/barttin. These results demonstrate that mutations in a cluster of hydrophobic residues within transmembrane domain 1 affect barttin-CLC-K interaction and impair gating modification by the accessory subunit. Whereas tight interaction is necessary for functional modification, even impaired association of barttin and CLC-K suffices for normal intracellular trafficking. Our findings allow definition of a likely interaction surface and clarify the mechanisms underlying CLC-K channel modification by barttin.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-11
    Description: CLC-K/barttin chloride channels are essential for NaCl re-absorption in Henle's loop and for potassium secretion by the stria vascularis in the inner ear. Here, we studied the posttranslational modification of such channels by palmitoylation of their accessory subunit barttin. We found that barttin is palmitoylated in vivo and in vitro and identified two conserved cysteine residues at positions 54 and 56 as palmitoylation sites. Point mutations at these two residues reduce the macroscopic current amplitudes in cells expressing CLC-K/barttin channels proportionally to the relative reduction in palmitoylated barttin. CLC-K/barttin expression, plasma membrane insertion, and single channel properties remain unaffected, indicating that these mutations decrease the number of active channels. R8W and G47R, two naturally occurring barttin mutations identified in patients with Bartter syndrome type IV, reduce barttin palmitoylation and CLC-K/barttin channel activity. Palmitoylation of the accessory subunit barttin might thus play a role in chloride channel dysfunction in certain variants of Bartter syndrome. We did not observe pronounced alteration of barttin palmitoylation upon increased salt and water intake or water deprivation, indicating that this posttranslational modification does not contribute to long term adaptation to variable water intake. Our results identify barttin palmitoylation as a novel posttranslational modification of CLC-K/barttin chloride channels.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-08-18
    Description: Neuropathic pain can develop as an agonizing sequela of diabetes mellitus and chronic uremia. A chemical link between both conditions of altered metabolism is the highly reactive compound methylglyoxal (MG), which accumulates in all cells, in particular neurons, and leaks into plasma as an index of the severity of the disorder. The electrophilic structure of this cytotoxic ketoaldehyde suggests TRPA1, a receptor channel deeply involved in inflammatory and neuropathic pain, as a molecular target. We demonstrate that extracellularly applied MG accesses specific intracellular binding sites of TRPA1, activating inward currents and calcium influx in transfected cells and sensory neurons, slowing conduction velocity in unmyelinated peripheral nerve fibers, and stimulating release of proinflammatory neuropeptides from and action potential firing in cutaneous nociceptors. Using a model peptide of the N terminus of human TRPA1, we demonstrate the formation of disulfide bonds based on MG-induced modification of cysteines as a novel mechanism. In conclusion, MG is proposed to be a candidate metabolite that causes neuropathic pain in metabolic disorders and thus is a promising target for medicinal chemistry.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...