GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Institute of Biological Sciences, 2012. This article is posted here by permission of American Institute of Biological Sciences for personal use, not for redistribution. The definitive version was published in BioScience 62 (2012): 342-253, doi:10.1525/bio.2012.62.4.6.
    Description: The US Long Term Ecological Research (LTER) Network enters its fourth decade with a distinguished record of achievement in ecological science. The value of long-term observations and experiments has never been more important for testing ecological theory and for addressing today's most difficult environmental challenges. The network's potential for tackling emergent continent-scale questions such as cryosphere loss and landscape change is becoming increasingly apparent on the basis of a capacity to combine long-term observations and experimental results with new observatory-based measurements, to study socioecological systems, to advance the use of environmental cyberinfrastructure, to promote environmental science literacy, and to engage with decisionmakers in framing major directions for research. The long-term context of network science, from understanding the past to forecasting the future, provides a valuable perspective for helping to solve many of the crucial environmental problems facing society today.
    Description: 2012-10-01
    Keywords: Coupled natural—human systems ; Cyberinfrastructure ; Environmental observatories ; Environmental education ; Socioecological systems
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Institute of Biological Sciences, 2012. This article is posted here by permission of American Institute of Biological Sciences for personal use, not for redistribution. The definitive version was published in BioScience 62 (2012): 405-415, doi:10.1525/bio.2012.62.4.11.
    Description: The cryosphere—the portion of the Earth's surface where water is in solid form for at least one month of the year—has been shrinking in response to climate warming. The extents of sea ice, snow, and glaciers, for example, have been decreasing. In response, the ecosystems within the cryosphere and those that depend on the cryosphere have been changing. We identify two principal aspects of ecosystem-level responses to cryosphere loss: (1) trophodynamic alterations resulting from the loss of habitat and species loss or replacement and (2) changes in the rates and mechanisms of biogeochemical storage and cycling of carbon and nutrients, caused by changes in physical forcings or ecological community functioning. These changes affect biota in positive or negative ways, depending on how they interact with the cryosphere. The important outcome, however, is the change and the response the human social system (infrastructure, food, water, recreation) will have to that change.
    Description: The authors wish to thank the funding provided by the National Science Foundation’s (NSF) Long Term Ecological Research (LTER) Network for supporting our long-term studies, in which we track the ecosystem response to the disappearing cryosphere. NSF LTER Site Grants OPP 0823101, OPP 1115245, DEB 1114804, DEB-1026415, DEB-0620579, and DEB-1027341 supported the authors during the preparation of this article.
    Description: 2012-10-01
    Keywords: Cryosphere ; Ecosystem response ; Environmental observatories
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2010. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 23, no. 3 (2010): 48-61, doi: 10.5670/oceanog.2010.23
    Description: Since its inception in 1960, the Intergovernmental Oceanographic Commission (IOC) has been responsible for organizing and coordinating the scientific investigation of ocean carbon. Roger Revelle (Scripps Institution of Oceanography) first articulated the principal need for international and intergovernmental coordination to address global-scale problems such as climate change when IOC was first developed. Regional to global-scale carbon studies started in earnest with the International Decade of Ocean Exploration (IDOE) and Geochemical Ocean Sections Study (GEOSECS) programs in the 1970s, but they were hampered by technological barriers that limited both the precision of carbon system measurements and the greater sampling frequency needed for a comprehensive global view. In 1979, IOC established the Committee on Climate Change and the Ocean (CCCO) with Revelle as Chair. CCCO called for a carbon observation program and sampling strategy that could determine the global oceanic CO2 inventory to an accuracy of 10–20 petagrams of carbon (Pg C). Perfection of the coulometric analysis technique of total dissolved inorganic carbon (DIC) in seawater by Ken Johnson (University of Rhode Island) and introduction of certified reference materials for DIC and alkalinity by Andrew Dickson (Scripps Institution of Oceanography) made such a study possible. The first global survey of ocean CO2 was carried out under the joint sponsorship of IOC and the Scientific Committee on Oceanic Research (SCOR) in the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE) in the 1990s. With these programs and underway pCO2 measuring systems on research vessels and ships of opportunity, ocean carbon data grew exponentially, reaching about a million total measurements by 2002 when Taro Takahashi (Lamont-Doherty Earth Observatory) and others provided the first robust mapping of surface ocean CO2. Using a new approach developed by Nicolas Gruber (ETH Zürich) and colleagues with JGOFS-WOCE and other synthesized data sets, one of this article’s authors (Sabine) with a host of coauthors estimated that the total accumulation of anthropogenic CO2 between 1800 and 1994 was 118 ± 19 Pg C, just within the uncertainty goals set by JGOFS and IOC prior to the global survey. Today, ocean carbon activities are coordinated through the International Ocean Carbon Coordination Project (IOCCP). Ocean carbon measurements now accumulate at a rate of over a million measurements per year—matching the total number achieved over the first three decades of ocean carbon studies. IOCCP is actively working to combine these data into uniform data sets that the community can use to better understand ocean carbon uptake and storage. The problem of ocean acidification caused by uptake of anthropogenic CO2 is now a major target of IOC and IOCCP.
    Description: IOC’s ocean carbon activities are funded through IOC and SCOR, with major financial support provided by the US National Science Foundation through a grant to UNESCO-IOC (OCE-0715161) and a grant to the Scientific Committee on Oceanic Research (OCE-0608600) for IOCCP. The activities also benefit from generous in-kind contributions from NOAA and national carbon programs in Japan and the EU.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...