GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Heart Association (AHA)  (9)
Document type
Years
  • 1
    Publication Date: 2015-12-24
    Description: Background Myocardial fibrosis (MF) in noninfarcted myocardium may be an interstitial disease pathway that confers vulnerability to hospitalization for heart failure, death, or both across the spectrum of heart failure and ejection fraction. Hospitalization for heart failure is an epidemic that is difficult to predict and prevent and requires potential therapeutic targets associated with outcomes. Method and Results We quantified MF with cardiovascular magnetic resonance extracellular volume fraction (ECV) measures in 1172 consecutive patients without amyloidosis or hypertrophic or stress cardiomyopathy and assessed associations with outcomes using Cox regression. ECV ranged from 16.6% to 47.8%. Over a median of 1.7 years, 111 patients experienced events after cardiovascular magnetic resonance, 55 had hospitalization for heart failure events, and there were 74 deaths. ECV was more strongly associated with outcomes than "nonischemic" MF observed with late gadolinium enhancement, thus ECV quantified MF in multivariable models. Adjusting for age, sex, renal function, myocardial infarction size, ejection fraction, hospitalization status, and heart failure stage, higher ECV was associated with hospitalization for heart failure (hazard ratio 1.77; 95% CI 1.32 to 2.36 for every 5% increase in ECV), death (hazard ratio 1.87 95% CI 1.45 to 2.40) or both (hazard ratio 1.85, 95% CI 1.50 to 2.27). ECV improved classification of persons at risk and improved model discrimination for outcomes (eg, hospitalization for heart failure: continuous net reclassification improvement 0.33, 95% CI 0.05 to 0.66; P =0.02; 0.16, 95% CI 0.01 to 0.33; P =0.02; integrated discrimination improvement 0.037, 95% CI 0.008 to 0.073; P 〈0.01). Conclusion MF measured by ECV is associated with hospitalization for heart failure, death, or both. MF may represent a principal phenotype of cardiac vulnerability that improves risk stratification. Because MF can be reversible, cells and enzymes regulating collagen could be potential therapeutic targets.
    Electronic ISSN: 2047-9980
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-22
    Description: Background— Extracellular matrix expansion is a key element of ventricular remodeling and a potential therapeutic target. Cardiovascular magnetic resonance (CMR) T 1 -mapping techniques are increasingly used to evaluate myocardial extracellular volume (ECV); however, the most widely applied methods are without histological validation. Our aim was to perform comprehensive validation of (1) dynamic-equilibrium CMR (DynEq-CMR), where ECV is quantified using hematocrit-adjusted myocardial and blood T 1 values measured before and after gadolinium bolus; and (2) isolated measurement of myocardial T 1 , used as an ECV surrogate. Methods and Results— Whole-heart histological validation was performed using 96 tissue samples, analyzed for picrosirius red collagen volume fraction, obtained from each of 16 segments of the explanted hearts of 6 patients undergoing heart transplantation who had prospectively undergone CMR before transplantation (median interval between CMR and transplantation, 29 days). DynEq-CMR–derived ECV was calculated from T 1 measurements made using a modified Look-Locker inversion recovery sequence before and 10 and 15 minutes post contrast. In addition, ECV was measured 2 to 20 minutes post contrast in 30 healthy volunteers. There was a strong linear relationship between DynEq-CMR–derived ECV and histological collagen volume fraction ( P 〈0.001; within-subject: r =0.745; P 〈0.001; r 2 =0.555 and between-subject: r =0.945; P 〈0.01; r 2 =0.893; for ECV calculated using 15-minute postcontrast T 1 ). Correlation was maintained throughout the entire heart. Isolated postcontrast T 1 measurement showed significant within-subject correlation with histological collagen volume fraction ( r =–0.741; P 〈0.001; r 2 =0.550 for 15-minute postcontrast T 1 ), but between-subject correlations were not significant. DynEq-CMR–derived ECV varied significantly according to contrast dose, myocardial region, and sex. Conclusions— DynEq-CMR–derived ECV shows a good correlation with histological collagen volume fraction throughout the whole heart. Isolated postcontrast T 1 measurement is insufficient for ECV assessment.
    Keywords: Cardiovascular imaging agents/Techniques, CT and MRI
    Print ISSN: 1941-9651
    Electronic ISSN: 1942-0080
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-17
    Keywords: Cardiovascular imaging agents/Techniques, CT and MRI
    Print ISSN: 1941-9651
    Electronic ISSN: 1942-0080
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-07
    Description: Background— Junctional adhesion molecule (JAM)-A expressed in endothelial, epithelial, and blood cells can regulate permeability and leukocyte extravasation. Atherosclerosis develops at sites of disturbed flow in large arteries, but the mechanisms guiding inflammatory cells into these predilection sites remain unknown. Methods and Results— To characterize cell-specific functions of JAM-A in atherosclerosis, we used apolipoprotein E–deficient mice with a somatic or endothelium-specific deficiency in JAM-A and bone marrow chimeras with JAM-A–deficient leukocytes. We show that impaired JAM-A expression in endothelial cells reduced mononuclear cell recruitment into the arterial wall and limited atherosclerotic lesion formation in hyperlipidemic mice. In contrast, JAM-A deficiency in bone marrow cells impeded monocyte de-adhesion, thereby increasing vascular permeability and lesion formation, whereas somatic JAM-A deletion revealed no significant effects. Regions with disturbed flow displayed a focal enrichment and luminal redistribution of endothelial JAM-A and were preferentially protected by its deficiency. The functional expression and redistribution of endothelial JAM-A was increased by oxidized low-density lipoprotein, but confined by atheroprotective laminar flow through an upregulation of microRNA (miR)-145, which repressed JAM-A. Conclusions— Our data identify endothelial JAM-A as an important effector molecule integrating atherogenic conditions to direct inflammatory cell entry at predilection sites of atherosclerosis.
    Keywords: Animal models of human disease, Gene expression, Gene regulation, Imaging, Mechanism of atherosclerosis/growth factors
    Electronic ISSN: 1524-4539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-21
    Description: Cardiovascular disease is the leading cause of death and morbidity worldwide. Improving vascular prevention and therapy based on a refined mechanistic pervasion of atherosclerosis as the underlying pathology could limit the effect of vascular disease in aging societies. During the past decades, microscopy has contributed greatly to a better understanding of vascular physiology and pathology by allowing imaging of living specimen with subcellular resolution and high specificity. An important advance has been accomplished through the application of multiphoton microscopy in the vascular domain, a technological development that enabled multidimensional and dynamic imaging deep into the cellular architecture of intact tissue under physiological conditions. To identify and validate new targets for treating atherosclerosis, novel imaging strategies with nanoscale resolution will be essential to visualize molecular processes in intracellular and extracellular compartments. This review will discuss the current use of 2-photon microscopy and will provide an overview and outlook on options for introducing nanoscopic optical imaging modalities in atherosclerosis research.
    Keywords: Pathophysiology, Imaging, Other imaging
    Print ISSN: 1079-5642
    Electronic ISSN: 1524-4636
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-03
    Description: Background— Recent epidemiology studies have reported associations between short-term ozone exposure and mortality. Such studies have previously reported associations between airborne particulate matter pollution and mortality, and support for a causal relationship has come from controlled-exposure studies that describe pathophysiological mechanisms by which particulate matter could induce acute mortality. In contrast, for ozone, almost no controlled-human-exposure studies have tested whether ozone exposure can modulate the cardiovascular system. Methods and Results— Twenty-three young healthy individuals were exposed in a randomized crossover fashion to clean air and to 0.3-ppm ozone for 2 hours while intermittently exercising. Blood was obtained immediately before exposure, immediately afterward, and the next morning. Continuous Holter monitoring began immediately before exposure and continued for 24 hours. Lung function was performed immediately before and immediately after exposure, and bronchoalveolar lavage was performed 24 hours after exposure. Immediately after ozone exposure, we observed a 98.9% increase in interleukin-8, a 21.4% decrease in plasminogen activator inhibitor-1, a 51.3% decrease in the high-frequency component of heart rate variability, and a 1.2% increase in QT duration. Changes in interleukin-1B and plasminogen activator inhibitor-1 were apparent 24 hours after exposure. In agreement with previous studies, we also observed ozone-induced drops in lung function and an increase in pulmonary inflammation. Conclusions— This controlled-human-exposure study shows that ozone can cause an increase in vascular markers of inflammation and changes in markers of fibrinolysis and markers that affect autonomic control of heart rate and repolarization. We believe that these findings provide biological plausibility for the epidemiology studies that associate ozone exposure with mortality. Clinical Trial Registration— URL: http://www.clinicaltrials.gov . Unique identifier: NCT01492517.
    Keywords: Health policy and outcome research, Fibrinolysis, Oxidant stress
    Electronic ISSN: 1524-4539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-07-31
    Keywords: Pacemaker, CT and MRI, Echocardiography
    Electronic ISSN: 1524-4539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-08-17
    Description: Rationale: Fetuin-A is a liver-derived plasma protein involved in the regulation of calcified matrix metabolism. Biochemical studies showed that fetuin-A is essential for the formation of protein-mineral complexes, called calciprotein particles (CPPs). CPPs must be cleared from circulation to prevent local deposition and pathological calcification. Objective: We studied CPP clearance in mice and in cell culture to identify the tissues, cells, and receptors involved in the clearance. Methods and Results: In mice, fetuin-A–containing CPPs were rapidly cleared by the reticuloendothelial system, namely Kupffer cells of the liver and marginal zone macrophages of the spleen. Macrophages from scavenger receptor-AI/II (SR-A)-deficient mice cleared CPPs less efficiently than macrophages from wild-type mice, suggesting that SR-AI/II is involved in CPP binding and endocytosis. Accordingly, we found reduced clearance of CPPs in SR-A/MARCO–deficient mice. Conclusions: We could demonstrate that fetuin-A–containing CPPs facilitate the clearance of mineral debris by macrophages via SR-A. Since the same receptor also contributes to the uptake of modified low-density lipoprotein particles in atherosclerosis, defective endocytosis of both types of particle may impinge on lipid as well as mineral debris clearance in calcifying atherosclerosis.
    Keywords: Animal models of human disease, Pathophysiology, Genetically altered mice, Lipid and lipoprotein metabolism, Mechanism of atherosclerosis/growth factors
    Print ISSN: 0009-7330
    Electronic ISSN: 1524-4571
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-13
    Description: Rationale: Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin α IIb β 3 -mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. Objective: This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. Methods and Results: JAM-A–deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On α IIb β 3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e ( apoe –/– ) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A –/– apoe–/– mice showed increased aortic plaque formation when compared with trJAM-A +/+ apoe –/– controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A –/– apoe –/– animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A –/– apoe –/– mice, and JAM-A–deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A –/– apoe –/– mice. Notably, these proinflammatory effects of JAM-A–deficient platelets could be abolished by the inhibition of α IIb β 3 signaling in vitro. Conclusions: Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease.
    Keywords: Pathophysiology, Other arteriosclerosis, Platelets, Mechanism of atherosclerosis/growth factors, Other Vascular biology
    Print ISSN: 0009-7330
    Electronic ISSN: 1524-4571
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...