GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Heart Association (AHA)  (46)
Document type
Keywords
Years
  • 11
    Publication Date: 2016-10-08
    Print ISSN: 0009-7330
    Electronic ISSN: 1524-4571
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-09-02
    Description: Rationale: PKP2 , encoding plakophilin 2 (PKP2), is the most common causal gene for arrhythmogenic cardiomyopathy. Objective: To characterize miRNA expression profile in PKP2-deficient cells. Methods and Results: Control and PKP2-knockdown HL-1 (HL-1 Pkp2-shRNA ) cells were screened for 750 miRNAs using low-density microfluidic panels. Fifty-nine miRNAs were differentially expressed. MiR-184 was the most downregulated miRNA. Expression of miR-184 in the heart and cardiac myocyte was developmentally downregulated and was low in mature myocytes. MicroRNA-184 was predominantly expressed in cardiac mesenchymal progenitor cells. Knockdown of Pkp2 in cardiac mesenchymal progenitor cells also reduced miR-184 levels. Expression of miR-184 was transcriptionally regulated by the E2F1 pathway, which was suppressed in PKP2-deficient cells. Activation of E2F1, on overexpression of its activator CCND1 (cyclin D1) or knockdown of its inhibitor retinoblastoma 1, partially rescued miR-184 levels. In addition, DNA methyltransferase-1 was recruited to the promoter region of miR-184, and the CpG sites at the upstream region of miR-184 were hypermethylated. Treatment with 5-aza-2'-deoxycytidine, a demethylation agent, and knockdown of DNA methyltransferase-1 partially rescued miR-184 level. Pathway analysis of paired miR-184:mRNA targets identified cell proliferation, differentiation, and death as the main affected biological processes. Knockdown of miR-184 in HL-1 cells and mesenchymal progenitor cells induced and, conversely, its overexpression attenuated adipogenesis. Conclusions: PKP2 deficiency leads to suppression of the E2F1 pathway and hypermethylation of the CpG sites at miR-184 promoter, resulting in downregulation of miR-184 levels. Suppression of miR-184 enhances and its activation attenuates adipogenesis in vitro. Thus, miR-184 contributes to the pathogenesis of adipogenesis in PKP2-deficient cells.
    Keywords: Animal Models of Human Disease, Mechanisms
    Print ISSN: 0009-7330
    Electronic ISSN: 1524-4571
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-08-23
    Description: Background and Purpose— High signal on T1-weighted fat-suppressed images in middle cerebral artery plaques on ex vivo magnetic resonance imaging was verified to be intraplaque hemorrhage histologically. However, the underlying plaque component of low signal on T1-weighted fat-suppressed images (LST1) has never been explored. Based on our experience, we hypothesized that LST1 might indicate the presence of lipid core within intracranial plaques. Methods— 1.5 T magnetic resonance imaging was performed in the postmortem brains to scan the cross sections of bilateral middle cerebral arteries. Then middle cerebral artery specimens were removed for histology processing. LST1 presence was identified on magnetic resonance images, and lipid core areas were measured on the corresponding histology sections. Results— Total 76 middle cerebral artery locations were included for analysis. LST1 showed a high specificity (96.9%; 95% confidence interval, 82.0%–99.8%) but a low sensitivity (38.6%; 95% confidence interval, 24.7%–54.5%) for detecting lipid core of all areas. However, the sensitivity increased markedly (81.2%; 95% confidence interval, 53.7%–95.0%) when only lipid cores of area ≥0.80 mm 2 were included. Mean lipid core area was 5 x larger in those with presence of LST1 than in those without (1.63±1.18 mm 2 versus 0.32±0.31 mm 2 ; P =0.003). Conclusions— LST1 is a promising imaging biomarker of identifying intraplaque lipid core, which may be useful to distinguish intracranial atherosclerotic disease from other intracranial vasculopathies and to assess plaque vulnerability for risk stratification of patients with intracranial atherosclerotic disease. In vivo clinical studies are required to explore the correlation between LST1 and clinical outcomes of patients with intracranial atherosclerotic disease.
    Keywords: Magnetic Resonance Imaging (MRI), Cerebrovascular Disease/Stroke, Vascular Disease
    Print ISSN: 0039-2499
    Electronic ISSN: 1524-4628
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-06-28
    Description: Background and Purpose— Intracranial atherosclerosis is a major cause of ischemic stroke worldwide. Intracranial vessel wall imaging is an upcoming field of interest to assess intracranial atherosclerosis. In this study, we investigated total intracranial plaque burden in patients with symptomatic middle cerebral artery stenosis, assessed plaque morphological features, and compared features of symptomatic and asymptomatic lesions using a 3T vessel wall sequence. Methods— Nineteen consecutive Chinese patients with ischemic stroke and transient ischemic attack (mean age: 67 years; 7 females) with a middle cerebral artery stenosis were scanned at 3T magnetic resonance imaging; the protocol included a time-of-flight magnetic resonance angiography and the T1-weighted volumetric isotropically reconstructed turbo spin echo acquisition sequence before and after (83%) contrast administration. Chi-square tests were used to assess associations between different plaque features. Statistical significance was set at P 〈0.05. Results— Vessel wall lesions were identified in 18 patients (95%), totaling 57 lesions in 494 segments (12% of segments). Lesions were located primarily in the anterior circulation (82%). Eccentric lesions were associated with a focal thickening pattern and concentric lesions with a diffuse thickening pattern ( P 〈0.001). When differentiating between asymptomatic and symptomatic lesions, an association ( P 〈0.05) was found between eccentricity and asymptomatic lesions, but not for enhancement or a specific thickening pattern. Symptomatic lesions did not have any specific morphological features. Conclusions— Our results lead to a 2-fold conclusion: (1) The classification system of both thickening pattern and distribution of the lesion can be simplified by using distribution pattern only and (2) differentiation between symptomatic and asymptomatic atherosclerotic lesions was possible using intracranial vessel wall imaging.
    Keywords: Magnetic Resonance Imaging (MRI), Ischemic Stroke, Transient Ischemic Attack (TIA), Atherosclerosis, Stenosis
    Print ISSN: 0039-2499
    Electronic ISSN: 1524-4628
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-12-10
    Description: BackgroundGanglionated plexus have been developed as additional ablation targets to improve the outcome of atrial fibrillation (AF) besides pulmonary vein isolation. Recent studies implicated an intimate relationship between neuronal sodium channel Nav1.8 (encoded by SCN10A) and AF. The underlying mechanism between Nav1.8 and AF remains unclear. This study aimed to determine the role of Nav1.8 in cardiac electrophysiology in an acute AF model and explore possible therapeutic targets.Methods and ResultsImmunohistochemical study was used on canine cardiac ganglionated plexus. Both Nav1.5 and Nav1.8 were expressed in ganglionated plexus with canonical neuronal markers. Sixteen canines were randomly administered either saline or the Nav1.8 blocker A‐803467. Electrophysiological study was compared between the 2 groups before and after 6‐hour rapid atrial pacing. Compared with the control group, administration of A‐803467 decreased the incidence of AF (87.5% versus 25.0%, P
    Keywords: Electrophysiology, Atrial Fibrillation, Autonomic Nervous System, Ion Channels/Membrane Transport, Gene Expression & Regulation
    Electronic ISSN: 2047-9980
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-09-13
    Description: Objective— The development of a murine model of spontaneous atherosclerotic plaque rupture with luminal thrombus. Methods and Results— Combined partial ligation of the left renal artery and left common carotid artery in 8-week-old apolipoprotein E–deficient mice induced endogenous renovascular hypertension and local low oscillatory shear stress in the left common carotid artery. After 8 weeks, a fresh left common carotid artery lumen thrombus associated with severe plaque burden was found in 50% (10/20) of the mice. Histological analyses indicated that all left common carotid artery lesions had vulnerable features, and 50% (5/10) of the mice showed plaque rupture with a lumen thrombus. Multiple layers with layering discontinuity and intraplaque hemorrhages were found in 80% (8/10) of the mice. Further experiments showed that both increased blood pressure, and angiotensin-II contributed to plaque progression and vulnerability. Decreased intimal collagen associated with increased collagenase activity and matrix metalloproteinase expression also resulted in plaque disruption. Conclusion— We demonstrate a murine model of spontaneous plaque rupture with a high incidence of luminal thrombus. The model not only nicely recapitulates the pathophysiological processes of human plaque rupture but it is also simple, fast, and highly efficient to generate.
    Keywords: Animal models of human disease
    Print ISSN: 1079-5642
    Electronic ISSN: 1524-4636
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-10-23
    Description: Background and Purpose— External counterpulsation (ECP) is a novel noninvasive method used to improve the perfusion of vital organs, which may benefit ischemic stroke patients. We hypothesized that ECP may augment cerebral blood flow of ischemic stroke patients via induced hypertension. Methods— We recruited ischemic stroke patients with cerebral intracranial large artery occlusive disease and healthy elderly controls into this study. Bilateral middle cerebral arteries of subjects were monitored using transcranial Doppler. Flow velocity changes before, during, and after ECP were, respectively, recorded for 3 minutes while continuous beat-to-beat blood pressure data were recorded. Cerebral augmentation index was the increase in percentage of middle cerebral artery mean flow velocity during ECP compared with baseline. Transcranial Doppler data were analyzed based on ipsilateral or contralateral to the infarct side. Results— ECP significantly increased mean blood pressure of stroke patients and controls. During ECP, middle cerebral artery mean flow velocities of stroke patients increased on both ipsilateral and contralateral sides when compared with baseline (ipsilateral cerebral augmentation index, 9.64%; contralateral cerebral augmentation index, 9%; both P 〈0.001), but there was no increase in difference between the 2 sides when compared with each other. Mean flow velocities of controls did not change under ECP. After ECP, blood pressure and flow velocity of stroke patients returned to baseline level. Conclusion— ECP provides a new method of cerebral blood flow augmentation in ischemic stroke by elevation of blood pressure. Flow augmentation induced by ECP suggests the improvement of cerebral perfusion and collateral supply from infarct ipsilateral and contralateral sides.
    Keywords: Cerebrovascular disease/stroke, Acute Cerebral Infarction, Doppler ultrasound, Transcranial Doppler etc., Other Stroke Treatment - Medical
    Print ISSN: 0039-2499
    Electronic ISSN: 1524-4628
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-07-19
    Description: Rationale: Transplantation of stem cells into damaged hearts has had modest success as a treatment for ischemic heart disease. One of the limitations is the poor stem cell survival in the diseased microenvironment. Prolyl hydroxylase domain protein 2 (PHD2) is a cellular oxygen sensor that regulates 2 key transcription factors involved in cell survival and inflammation: hypoxia-inducible factor and nuclear factor-B. Objective: We studied whether and how PHD2 silencing in human adipose-derived stem cells (ADSCs) enhances their cardioprotective effects after transplantation into infarcted hearts. Methods and Results: ADSCs were transduced with lentiviral short hairpin RNA against prolyl hydroxylase domain protein 2 (shPHD2) to silence PHD2. ADSCs, with or without shPHD2, were transplanted after myocardial infarction in mice. ADSCs reduced cardiomyocyte apoptosis, fibrosis, and infarct size and improved cardiac function. shPHD2-ADSCs exerted significantly more protection. PHD2 silencing induced greater ADSC survival, which was abolished by short hairpin RNA against hypoxia-inducible factor-1α. Conditioned medium from shPHD2-ADSCs decreased cardiomyocyte apoptosis. Insulin-like growth factor-1 (IGF-1) levels were significantly higher in the conditioned medium of shPHD2-ADSCs versus ADSCs, and depletion of IGF-1 attenuated the cardioprotective effects of shPHD2-ADSC–conditioned medium. Nuclear factor-B activation was induced by shPHD2 to induce IGF-1 secretion via binding to IGF-1 gene promoter. Conclusions: PHD2 silencing promotes ADSCs survival in infarcted hearts and enhances their paracrine function to protect cardiomyocytes. The prosurvival effect of shPHD2 on ADSCs is hypoxia-inducible factor-1α dependent, and the enhanced paracrine function of shPHD2-ADSCs is associated with nuclear factor-B–mediated IGF-1 upregulation. PHD2 silencing in stem cells may be a novel strategy for enhancing the effectiveness of stem cell therapy after myocardial infarction.
    Keywords: Animal models of human disease, Apoptosis, Heart failure - basic studies, Acute myocardial infarction
    Print ISSN: 0009-7330
    Electronic ISSN: 1524-4571
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-08-21
    Description: Objective— Kindlin-3 is a critical supporter of integrin function in platelets. Lack of expression of kindlin-3 protein in patients impairs integrin αIIbβ3–mediated platelet aggregation. Although kindlin-3 has been categorized as an integrin-binding partner, the functional significance of the direct interaction of kindlin-3 with integrin αIIbβ3 in platelets has not been established. Here, we evaluated the significance of the binding of kindlin-3 to integrin αIIbβ3 in platelets in supporting integrin αIIbβ3–mediated platelet functions. Approach and Results— We generated a strain of kindlin-3 knockin (K3KI) mice that express a kindlin-3 mutant that carries an integrin-interaction defective substitution. K3KI mice could survive normally and express integrin αIIbβ3 on platelets similar to their wild-type counterparts. Functional analysis revealed that K3KI mice exhibited defective platelet function, including impaired integrin αIIbβ3 activation, suppressed platelet spreading and platelet aggregation, prolonged tail bleeding time, and absence of platelet-mediated clot retraction. In addition, whole blood drawn from K3KI mice showed resistance to in vitro thrombus formation and, as a consequence, K3KI mice were protected from in vivo arterial thrombosis. Conclusions— These observations demonstrate that the direct binding of kindlin-3 to integrin αIIbβ3 is involved in supporting integrin αIIbβ3 activation and integrin αIIbβ3-dependent responses of platelets and consequently contributes significantly to arterial thrombus formation.
    Keywords: Aggregation, Platelets
    Print ISSN: 1079-5642
    Electronic ISSN: 1524-4636
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-02-20
    Description: Objective— To investigate the novel function of ASK1-interacting protein-1 (AIP1) in vascular endothelial cell growth factor receptor (VEGFR)-3 signaling, and VEGFR-3–dependent angiogenesis and lymphangiogenesis. Approach and Results— AIP1, a signaling scaffold protein, is highly expressed in the vascular endothelium. We have previously reported that AIP1 functions as an endogenous inhibitor in pathological angiogenesis by blocking VEGFR-2 activity. Surprisingly, here we observe that mice with a global deletion of AIP1-knockout mice (AIP1-KO) exhibit reduced retinal angiogenesis with less sprouting and fewer branches. Vascular endothelial cell (but not neuronal)–specific deletion of AIP1 causes similar defects in retinal angiogenesis. The reduced retinal angiogenesis correlates with reduced expression in VEGFR-3 despite increased VEGFR-2 levels in AIP1-KO retinas. Consistent with the reduced expression of VEGFR-3, AIP1-KO show delayed developmental lymphangiogenesis in neonatal skin and mesentery, and mount weaker VEGF-C–induced cornea lymphangiogenesis. In vitro, human lymphatic endothelial cells with AIP1 small interfering RNA knockdown, retinal endothelial cells, and lymphatic endothelial cells isolated from AIP1-KO all show attenuated VEGF-C–induced VEGFR-3 signaling. Mechanistically, we demonstrate that AIP1 via vegfr-3 –specific miR-1236 increases VEGFR-3 protein expression and that, by directly binding to VEGFR-3, it enhances VEGFR-3 endocytosis and stability. Conclusion— Our in vivo and in vitro results provide the first insight into the mechanism by which AIP1 mediates VEGFR-3–dependent angiogenic and lymphangiogenic signaling.
    Keywords: Angiogenesis
    Print ISSN: 1079-5642
    Electronic ISSN: 1524-4636
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...