GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-29
    Description: Background— The role of right ventricular (RV) diastolic stiffness in pulmonary arterial hypertension (PAH) is not well established. Therefore, we investigated the presence and possible underlying mechanisms of RV diastolic stiffness in PAH patients. Methods and Results— Single-beat RV pressure-volume analyses were performed in 21 PAH patients and 7 control subjects to study RV diastolic stiffness. Data are presented as mean±SEM. RV diastolic stiffness (β) was significantly increased in PAH patients (PAH, 0.050±0.005 versus control, 0.029±0.003; P 〈0.05) and was closely associated with disease severity. Subsequently, we searched for possible underlying mechanisms using RV tissue of PAH patients undergoing heart/lung transplantation and nonfailing donors. Histological analyses revealed increased cardiomyocyte cross-sectional areas (PAH, 453±31 μm 2 versus control, 218±21 μm 2 ; P 〈0.001), indicating RV hypertrophy. In addition, the amount of RV fibrosis was enhanced in PAH tissue (PAH, 9.6±0.7% versus control, 7.2±0.6%; P 〈0.01). To investigate the contribution of stiffening of the sarcomere (the contractile apparatus of RV cardiomyocytes) to RV diastolic stiffness, we isolated and membrane-permeabilized single RV cardiomyocytes. Passive tension at different sarcomere lengths was significantly higher in PAH patients compared with control subjects (〉200%; P interaction 〈0.001), indicating stiffening of RV sarcomeres. An important regulator of sarcomeric stiffening is the sarcomeric protein titin. Therefore, we investigated titin isoform composition and phosphorylation. No alterations were observed in titin isoform composition (N2BA/N2B ratio: PAH, 0.78±0.07 versus control, 0.91±0.08), but titin phosphorylation in RV tissue of PAH patients was significantly reduced (PAH, 0.16±0.01 arbitrary units versus control, 0.20±0.01 arbitrary units; P 〈0.05). Conclusions— RV diastolic stiffness is significantly increased in PAH patients, with important contributions from increased collagen and intrinsic stiffening of the RV cardiomyocyte sarcomeres.
    Electronic ISSN: 1524-4539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-02
    Description: Background— Diastolic dysfunction is a poorly understood but clinically pervasive syndrome that is characterized by increased diastolic stiffness. Titin is the main determinant of cellular passive stiffness. However, the physiological role that the tandem immunoglobulin (Ig) segment of titin plays in stiffness generation and whether shortening this segment is sufficient to cause diastolic dysfunction need to be established. Methods and Results— We generated a mouse model in which 9 Ig-like domains (Ig3–Ig11) were deleted from the proximal tandem Ig segment of the spring region of titin (IG KO). Exon microarray analysis revealed no adaptations in titin splicing, whereas novel phospho-specific antibodies did not detect changes in titin phosphorylation. Passive myocyte stiffness was increased in the IG KO, and immunoelectron microscopy revealed increased extension of the remaining titin spring segments as the sole likely underlying mechanism. Diastolic stiffness was increased at the tissue and organ levels, with no consistent changes in extracellular matrix composition or extracellular matrix–based passive stiffness, supporting a titin-based mechanism for in vivo diastolic dysfunction. Additionally, IG KO mice have a reduced exercise tolerance, a phenotype often associated with diastolic dysfunction. Conclusions— Increased titin-based passive stiffness is sufficient to cause diastolic dysfunction with exercise intolerance.
    Keywords: Other myocardial biology, Other heart failure
    Electronic ISSN: 1524-4539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-26
    Keywords: Structure, Other myocardial biology, Congestive, Cell signalling/signal transduction, Gene regulation, Myocardial cardiomyopathy disease, Genetics of cardiovascular disease
    Electronic ISSN: 1524-4539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-28
    Description: Background Right ventricular (RV) diastolic function is impaired in patients with pulmonary arterial hypertension (PAH). Our previous study showed that elevated cardiomyocyte stiffness and myofilament Ca 2+ sensitivity underlie diastolic dysfunction in PAH. This study investigates protein modifications contributing to cellular diastolic dysfunction in PAH. Methods and Results RV samples from PAH patients undergoing heart-lung transplantation were compared to non-failing donors (Don). Titin stiffness contribution to RV diastolic dysfunction was determined by Western-blot analyses using antibodies to protein-kinase-A (PKA), Cα (PKCα) and Ca 2+ /calmoduling-dependent-kinase (CamKII) titin and phospholamban (PLN) phosphorylation sites: N2B (Ser469), PEVK (Ser170 and Ser26), and PLN (Thr17), respectively. PKA and PKCα sites were significantly less phosphorylated in PAH compared with donors ( P 〈0.0001). To test the functional relevance of PKA-, PKCα-, and CamK II -mediated titin phosphorylation, we measured the stiffness of single RV cardiomyocytes before and after kinase incubation. PKA significantly decreased PAH RV cardiomyocyte diastolic stiffness, PKCα further increased stiffness while CamK II had no major effect. CamKII activation was determined indirectly by measuring PLN Thr17phosphorylation level. No significant changes were found between the groups. Myofilament Ca 2+ sensitivity is mediated by sarcomeric troponin I (cTnI) phosphorylation. We observed increased unphosphorylated cTnI in PAH compared with donors ( P 〈0.05) and reduced PKA-mediated cTnI phosphorylation (Ser22/23) ( P 〈0.001). Finally, alterations in Ca 2+ -handling proteins contribute to RV diastolic dysfunction due to insufficient diastolic Ca 2+ clearance. PAH SERCA2a levels and PLN phosphorylation were significantly reduced compared with donors ( P 〈0.05). Conclusions Increased titin stiffness, reduced cTnI phosphorylation, and altered levels of phosphorylation of Ca 2+ handling proteins contribute to RV diastolic dysfunction in PAH.
    Electronic ISSN: 2047-9980
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-25
    Description: Background The titin gene ( TTN ) encodes the largest human protein, which plays a central role in sarcomere organization and passive myocyte stiffness. TTN truncating mutations cause dilated cardiomyopathy (DCM); however, the role of TTN missense variants in DCM has been difficult to elucidate because of the presence of background TTN variation. Methods and Results A cohort of 147 DCM index subjects underwent DNA sequencing for 313 TTN exons covering the N2B and N2BA cardiac isoforms of TTN . Of the 348 missense variants, we identified 44 "severe" rare variants by using a bioinformatic filtering process in 37 probands. Of these, 5 probands were double heterozygotes (additional variant in another DCM gene) and 7 were compound heterozygotes (2 TTN "severe" variants). Segregation analysis allowed the classification of the "severe" variants into 5 "likely" (cosegregating), 5 "unlikely" (noncosegregating), and 34 "possibly" (where family structure precluded segregation analysis) disease-causing variants. Patients with DCM carrying "likely" or "possibly" pathogenic TTN "severe" variants did not show a different outcome compared with "unlikely" and noncarriers of a "severe" TTN variant. However, the "likely" and "possibly" disease-causing variants were overrepresented in the C-zone of the A-band region of the sarcomere. Conclusions TTN missense variants are common and present a challenge for bioinformatic classification, especially when informative families are not available. Although DCM patients carrying bioinformatically "severe" TTN variants do not appear to have a worse clinical course than noncarriers, the nonrandom distribution of "likely" and "possibly" disease-causing variants suggests a potential biological role for some TTN missense variants.
    Electronic ISSN: 2047-9980
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...