GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-14
    Description: Monoamine oxidases (MAOs) generate H 2 O 2 as a by-product of their catalytic cycle. Whether MAOs are mediators of endothelial dysfunction is unknown and was determined here in the angiotensin II and lipopolysaccharide-models of vascular dysfunction in mice. Quantitative real-time polymerase chain reaction revealed that mouse aortas contain enzymes involved in catecholamine generation and MAO-A and MAO-B mRNA. MAO-A and -B proteins could be detected by Western blot not only in mouse aortas but also in human umbilical vein endothelial cells. Ex vivo incubation of mouse aorta with recombinant MAO-A increased H 2 O 2 formation and induced endothelial dysfunction that was attenuated by polyethylene glycol-catalase and MAO inhibitors. In vivo lipopolysaccharide (8 mg/kg IP overnight) or angiotensin II (1 mg/kg per day, 2 weeks, minipump) treatment induced vascular MAO-A and -B expressions and resulted in attenuated endothelium-dependent relaxation of the aorta in response to acetylcholine. MAO inhibitors reduced the lipopolysaccharide- and angiotensin II–induced aortic reactive oxygen species formation by 50% (ferrous oxidation xylenol orange assay) and partially normalized endothelium-dependent relaxation. MAO-A and MAO-B inhibitors had an additive effect; combined application completely restored endothelium-dependent relaxation. To determine how MAO-dependent H 2 O 2 formation induces endothelial dysfunction, cyclic GMP was measured. Histamine stimulation of human umbilical vein endothelial cells to activate endothelial NO synthase resulted in an increase in cyclic GMP, which was almost abrogated by MAO-A exposure. MAO inhibition prevented this effect, suggesting that MAO-induced H 2 O 2 formation is sufficient to attenuate endothelial NO release. Thus, MAO-A and MAO-B are both expressed in the mouse aorta, induced by in vivo lipopolysaccharide and angiotensin II treatment and contribute via the generation of H 2 O 2 to endothelial dysfunction in vascular disease models.
    Keywords: Endothelium/vascular type/nitric oxide, Other Vascular biology
    Print ISSN: 0194-911X
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-03
    Description: Cardiomyocyte dedifferentiation may be an important source of proliferating cardiomyocytes facilitating cardiac repair. Cardiomyocyte dedifferentiation and proliferation induced by oncostatin-M (OSM) is characterized by sarcomere degeneration. However, the mechanism underlying sarcomere degeneration remains unclear. We hypothesized that this process may involve matrix metalloproteinase-2 (MMP-2), a key protease localized at the sarcomere in cardiomyocytes. We tested the hypothesis that MMP-2 is involved in the sarcomere degeneration that characterizes cardiomyocyte dedifferentiation. Confocal immunofluorescence and biochemical methods were used to explore the role of MMP-2 in OSM-induced dedifferentiation of neonatal rat ventricular myocytes (NRVM). OSM caused a concentration- and time-dependent loss of sarcomeric α-actinin and troponin-I in NRVM. Upon OSM-treatment, the mature sarcomere transformed to a phenotype resembling a less-developed sarcomere, i.e., loss of sarcomeric proteins and Z-disk transformed into disconnected Z bodies, characteristic of immature myofibrils. OSM dose dependently increased MMP-2 activity. Both the pan-MMP inhibitor GM6001 and the selective MMP-2 inhibitor ARP 100 prevented sarcomere degeneration induced by OSM treatment. OSM also induced NRVM cell cycling and increased methyl-thiazolyl-tetrazolium (MTT) staining, preventable by MMP inhibition. These results suggest that MMP-2 mediates sarcomere degeneration in OSM-induced cardiomyocyte dedifferentiation and thus potentially contributes to cardiomyocyte regeneration.
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-02
    Description: Matrix metalloproteinase-2 (MMP-2) has been extensively studied in the context of extracellular matrix remodeling but is also localized within cells and can be activated by prooxidants to proteolyze specific intercellular targets. Although there are reports of MMP-2 in mitochondria, a critical source of cellular oxidative stress, these studies did not take into account the presence within their preparations of the mitochondria-associated membrane (MAM), a subdomain of the endoplasmic reticulum (ER). We hypothesized that MMP-2 is situated in the MAM and therefore investigated its subcellular distribution between mitochondria and the MAM. Immunogold electron microscopy revealed MMP-2 localized in mitochondria of heart sections from mice. In contrast, immunofluorescence analysis of an MMP-2:HaloTag fusion protein expressed in HL-1 cardiomyocytes showed an ER-like distribution, with greater colocalization with an ER marker (protein disulfide isomerase) relative to the mitochondrial marker, MitoTracker red. Although MMP-2 protein and enzymatic activity were present in crude mitochondrial fractions, once these were separated into purified mitochondria and MAM, MMP-2 was principally associated with the latter. Thus, although mitochondria may contain minimal levels of MMP-2, the majority of MMP-2 previously identified as "mitochondrial" is in fact associated with the MAM. We also found that calreticulin, an ER- and MAM-resident Ca 2+ handling protein and chaperone, could be proteolyzed by MMP-2 in vitro. MAM-localized MMP-2 could therefore potentially impact mitochondrial function by affecting ER-mitochondrial Ca 2+ signaling via its proteolysis of calreticulin.
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-26
    Description: Background and Purpose— Ischemic strokes with motor deficits lead to widespread changes in neural activity and interregional coupling between primary and secondary motor areas. Compared with frontal circuits, the knowledge is still limited to what extent parietal cortices and their interactions with frontal motor areas undergo plastic changes and might contribute to residual motor functioning after stroke. Methods— Fifteen well-recovered patients were evaluated 3 months after stroke by means of functional magnetic resonance imaging while performing visually guided hand grips with their paretic hand. Dynamic causal modeling was used to investigate task-related effective connectivity between ipsilesional posterior parietal regions along the intraparietal sulcus and frontal key motor areas, such as the primary motor cortex, the ventral premotor cortex, and the supplementary motor area. Results— Compared with healthy controls of similar age and sex, we observed significantly enhanced reciprocal facilitatory connectivity between the primary motor cortex and the anterior intraparietal sulcus of the ipsilesional hemisphere. Beyond that and as a fingerprint of excellent recovery, the coupling pattern of the parietofrontal network was near-normal. An association between coupling parameters and clinical scores was not detected. Conclusions— The present analysis further adds to the understanding of the parietofrontal network of the ipsilesional hemisphere as a prominent circuit involved in plastic changes after stroke.
    Keywords: Functional Magnetic Resonance Imaging (fMRI), Imaging, Rehabilitation, Ischemic Stroke
    Print ISSN: 0039-2499
    Electronic ISSN: 1524-4628
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-08
    Description: Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4 . High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca 2+ /calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria.
    Keywords: Call for Papers: Cardiovascular Mitochondria and Redox Control
    Print ISSN: 0363-6135
    Electronic ISSN: 1522-1539
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-24
    Description: Background and Purpose— Aside from the primary motor cortex, the corticospinal tract (CST) also receives fibers from dorsal and ventral premotor cortices and supplementary motor area, all of which might potentially contribute to motor function after stroke. We sought to quantify the microstructural integrity of CST originating from the hand representations in these 4 motor cortices separately and examined how these values related to hand motor impairment. Methods— Probabilistic tractography from functional MRI-defined cortical sites demonstrated continuous CST originating from hand representations within each motor area in a group of healthy subjects. Microstructural integrity for each tract was calculated using fractional anisotropy at the level of the posterior limb of the internal capsule in a group of patients with chronic stroke. Results— Fractional anisotropy was reduced in all 4 CSTs in the affected hemisphere. Grip strength correlated with the integrity of the CSTs originating from primary motor and dorsal premotor cortices, whereas, in a multiple regression model, the latter improved the ability of primary motor cortex CST to explain variability in grip strength. Conclusion— Handgrip critically depends on the CST originating in primary motor cortex but microstructural integrity of CST originating from premotor cortices appears to play a role in supporting motor function after stroke.
    Keywords: CT and MRI, Acute Cerebral Infarction, Computerized tomography and Magnetic Resonance Imaging, Rehabilitation, Stroke
    Print ISSN: 0039-2499
    Electronic ISSN: 1524-4628
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...